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Introduction

Consider the following eigenvalue problem

L(λ)Y =
(
d/dx − A(·, λ)

)
Y = 0, (1)

where dom(L(·)) = H1(R,Cn) ⊂ L2(R,Cn) and A(·, λ) is analytic
in λ. Assume

A(x , λ) = A0(x , λ) + V (x) (2)

where A0(x , ·) is bounded and continuous and

‖V ‖Cn×n ∈ L1(R,C) (3)

Our objective is to find values of λ for which dim ker
(
L(λ)

)
6= 0.
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For such a purpose, the following methods are usually preferred:

1 computing eigenvalues associated with the finite dimensional
operator approximating L(·). This can be achieved, e.g., by a
finite difference/element methods and so on; or

2 computing the zeros of the so called Evans function E (λ).

Our strategy to locate λ is to compute the zeros of an analytic
function. Such a function is defined as the Fredholm determinant.
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Let H J∞ denote a separable Hilbert space and the set of
compact operators in H, respectively. Then, the Schatten–von
Neumann classes of compact operators are defined by

Jp = {A ∈ J∞ : tr(|A|p) <∞} (1 6 p <∞)

with norm
‖A‖pp = tr(|A|p).
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The operator A is of trace-class if ‖A‖1 <∞ and is of
Hilbert–Schmidt class if ‖A‖2 <∞. Given any operator A ∈ Jp,
the p-modified Fredholm determinants are given by

detp(id− A) =
∞∏
n=1

[
(1− µn) exp

(p−1∑
j=1

µjn/j
)]
,

where {µn}n>1 are the set of eigenvalues of A. If A ∈ J1 then the
Fredholm determinant is defined by

d(λ) := det1(id− A)

=
∞∏
n=1

(1− µn).
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Properties

Let A : H → H be defined by

Au(x) =

∫
R

k(x , y)u(y)dy .

If k ∈ L2(R2) then A ∈ J2. Indeed, ‖A‖2 = ‖k‖L2(R2). Suppose

that A ∈ J1 with k ∈ C (R2) then

tr(A) =

∫
R

k(x , x)dx .

Moreover, we have

d(λ) = det2(id− A)e−tr(A).

Issa Karambal Perturbation determinants and Evans function



Introduction
Schatten–von Neumann class

Evans function
Fredholm determinant for the travelling wave problems

The Evans function E (λ) is an analytic function whose zeros
coincide in location and multiplicity to the eigenvalues associated
with the operator L(·). Explicitly, the Evans function E (λ) is
defined by

E (λ) = e
∫ x
0 tr
(
A(x ,λ)

)
dsY−(x , λ) ∧ Y +(x , λ), (4)

where Y±(x , λ) are the subspaces decaying at ±∞.
If µj ∈ σ

(
A0(λ)

)
are simple then the Evans function is reduced to

a simple Wronskian, i.e.,

E (λ) = e
∫ x
0 tr
(
A(x ,λ)

)
ds detCn×n(u−1 , · · · , u

+
k , u

+
k+1, · · · , u

+
n )(x , λ)

where u±j are the solution of (1) decaying at ±∞.
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Reformulation
Connection

Given the decomposition (2), we write

L(λ) = L−10 (λ)
(
id− L−10 (λ)V

)
, (∀λ ∈ ρ

(
L0(·)

)
(5)

where
L0(λ) := d/dx − A0(·, λ)

and ρ
(
L0(·)

)
is the resolvent set of L0(·). Assume that

L−10 (λ)V ∈ J∞. Then from (5), it follows that

λ ∈ σd
(
L(·)

)
⇔ detF

(
id− L−10 (λ)V

)
= 0,

where detF denote the determinant of a Fredholm operator.
Equivalently, we rewrite the above vanishing determinant as

detF
(
id− K (λ)

)
= 0,
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where K (λ) is the Birman–Schwinger operator given by

K (λ) = |V |1/2L−10 (λ)Ṽ ,

with Ṽ = U|V |1/2 (U a unitary transformation). The integral
kernel associated with K (λ) is given by

k(x , y , λ) =

{
−|V (x)|1/2Φ(x , λ)QΦ−1(y , λ)Ṽ (y), x 6 y

|V (x)|1/2Φ(x , λ)(id− Q)Φ−1(y , λ)Ṽ (y), x > y ,

where Φ is the fundamental matrix solution of L0(λ)Y = 0 and Q
is a projection operator. Assuming that K (λ) ∈ J∞ then

λ ∈ σd
(
L(·)

)
⇔ 1 ∈ σd

(
K (λ)

)
.

With the assumption that ρ
(
L0(·)

)
6= ∅ and ‖V ‖Cn×n ∈ L1. We

have that

K (λ) ∈ J2, (since ‖k‖L2(R2,Cn×n) <∞).
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In general, the integral operator K (λ) is of Hilbert–Schmidt class.
However, assume that A0(x , λ) = A0(λ) and that A0(λ) is
hyperbolic. Moreover, assume that A0(λ) is diagonalisable then we
have:

Theorem

For λ ∈ ρ
(
L0(·)

)
, the operator K (λ) is of trace class.

Proof.

Write ĝ−1(−id/dx) =
(
d/dx − A0(λ)

)−1
. Then, one can show

that ‖ĝ−1(ξ)‖2Cn×n 6 c 1
1+ξ2

. By Corollary 4.8 in (a) it follows that

K (λ) is of trace class
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Define the matrix transmission coefficient D(λ) by

D(λ) := lim
x→∞

Z−0 (x , λ)Y +(x , λ),

where Z−0 ∈ L2(R−,Ck×n) and Y + ∈ L2(R+,Cn×k) are the
solution of the adjoint problem of L0(λ)Y = 0 and the
matrix-valued Jost solution decaying at +∞ of L(λ)Y = 0,
respectively. Assume that A0(x , λ) = A0(λ).

Theorem

For λ ∈ ρ, we have

detCk×k D(λ) =
E (λ)

c(λ)
,

where c(λ) = detCn×n Φ(·, λ)
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Assume that K (λ) is of trace class. Then the following result holds

Theorem

For λ ∈ ρ
(
L0(·)

)
, we have

det1
(
id− K (λ)

)
= detCk×k D(λ).

Hence

det1
(
id− K (λ)

)
=

E (λ)

c(λ)
.

That is, the infinite dimensional determinant in the left-hand side
is reduced to a finite dimensional determinant!
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As a consequence of the above theorem, we have

detF L(λ) = c̃(λ)E (λ),

where c̃(λ) = detF L0(λ)/ detCn×n Φ(·, λ).
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