Essential spectrum of dissipative Maxwell systems

Francesco Ferraresso
University of Sassari, Italy
fferraresso@uniss.it

Mathematical aspects of the physics with non-self-adjoint operators
6.6.2024

Partially funded by EINS project 00000038/06

Literature

[Lassas '98] Lassas, Matti - The essential spectrum of the nonselfadjoint Maxwell operator in a bounded domain, J. Math. Anal. Appl. (1998)
[ABMW '19] Alberti, Giovanni S., Brown, Malcolm, Marletta, Marco, and Wood, lan - Essential spectrum for Maxwell's equations, Ann. Henri Poincaré (2019)
[BFMT '23] Bögli, Sabine, F.F., Marletta, Marco, Tretter, Christiane - Spectral analysis and domain truncation for Maxwell's equations, J. Math. Pures Appl. (2023)
[FM '23] F.F., Marletta, Marco - Spectral properties of the inhomogeneous Drude-Lorentz model with dissipation, JDE (2023)
[FM '24] F.F., Marletta, Marco - Essential spectrum for dissipative Maxwell equations in domains with cylindrical ends, JMAA (2024)
[FM hs] F.F., Marletta, Marco - On the spectrum of a dissipative Maxwell system in the presence of Faraday layers, preprint (2024)

Anisotropic Maxwell's equations

Macroscopic electromagnetic properties of a medium are described by Maxwell's equations

$$
\partial_{t} D=\text { curl } H-J, \quad \partial_{t} B=- \text { curl } E, \quad \operatorname{div} D=\rho, \quad \operatorname{div} B=0 .
$$

Anisotropic Maxwell's equations

Macroscopic electromagnetic properties of a medium are described by Maxwell's equations

$$
\partial_{t} D=\text { curl } H-J, \quad \partial_{t} B=- \text { curl } E, \quad \operatorname{div} D=\rho, \quad \operatorname{div} B=0 .
$$

Depending on the medium, different constitutive relations link the couple (D, B) to (E, H).

Anisotropic Maxwell's equations

Macroscopic electromagnetic properties of a medium are described by Maxwell's equations

$$
\partial_{t} D=\text { curl } H-J, \quad \partial_{t} B=- \text { curl } E, \quad \operatorname{div} D=\rho, \quad \operatorname{div} B=0 .
$$

Depending on the medium, different constitutive relations link the couple (D, B) to (E, H).
Example: linear anisotropic medium

$$
D=\epsilon E, \quad B=\mu H, \quad \rho=J=0 .
$$

Anisotropic Maxwell's equations

Macroscopic electromagnetic properties of a medium are described by Maxwell's equations

$$
\partial_{t} D=\text { curl } H-J, \quad \partial_{t} B=- \text { curl } E, \quad \operatorname{div} D=\rho, \quad \operatorname{div} B=0 .
$$

Depending on the medium, different constitutive relations link the couple (D, B) to (E, H).
Example: linear anisotropic medium

$$
D=\epsilon E, \quad B=\mu H, \quad \rho=J=0 .
$$

Here ϵ, μ are matrix-valued bounded functions representing the electric permittivity and the magnetic permeability of the medium. Assume ϵ, μ are L^{∞}, symmetric-matrix-valued functions, $\epsilon, \mu \geq c \mathbb{I}, c>0$.

Conductivity

Example: linear anisotropic conductive medium

Conductivity

Example: linear anisotropic conductive medium

$$
D=\epsilon E, \quad B=\mu H, \quad J=\sigma E, \quad \rho=0 .
$$

Conductivity

Example: linear anisotropic conductive medium

$$
D=\epsilon E, \quad B=\mu H, \quad J=\sigma E, \quad \rho=0 .
$$

σ is the conductivity, $\sigma \in L^{\infty}\left(\Omega ; \mathbb{R}^{3 \times 3}\right), \sigma \geq 0$.

Conductivity

Example: linear anisotropic conductive medium

$$
D=\epsilon E, \quad B=\mu H, \quad J=\sigma E, \quad \rho=0 .
$$

σ is the conductivity, $\sigma \in L^{\infty}\left(\Omega ; \mathbb{R}^{3 \times 3}\right), \sigma \geq 0$. In time-harmonic formulation, in a (unbounded) Lipschitz set $\Omega \subset \mathbb{R}^{3}, F_{i} \in L^{2}(\Omega)^{3}$,

$$
\begin{cases}-i \sigma E+i \text { curl } H-\omega \epsilon E=F_{1}, & \text { in } \Omega, \\ -i \operatorname{curl} E-\omega \mu H=F_{2}, & \text { in } \Omega, \\ v \times E=0, & \text { on } \partial \Omega .\end{cases}
$$

Conductivity

Example: linear anisotropic conductive medium

$$
D=\epsilon E, \quad B=\mu H, \quad J=\sigma E, \quad \rho=0 .
$$

σ is the conductivity, $\sigma \in L^{\infty}\left(\Omega ; \mathbb{R}^{3 \times 3}\right), \sigma \geq 0$. In time-harmonic formulation, in a (unbounded) Lipschitz set $\Omega \subset \mathbb{R}^{3}, F_{i} \in L^{2}(\Omega)^{3}$,

$$
\begin{cases}-i \sigma E+i \operatorname{curl} H-\omega \epsilon E=F_{1}, & \text { in } \Omega \\ -i \operatorname{curl} E-\omega \mu H=F_{2}, & \text { in } \Omega \\ v \times E=0, & \text { on } \partial \Omega\end{cases}
$$

$E \in H_{0}(\operatorname{curl}, \Omega):=\left\{u \in L^{2}(\Omega)^{3}:\right.$ curl $\left.u \in L^{2}(\Omega)^{3},\left.(v \times u)\right|_{\partial \Omega}=0\right\}$

Conductivity

Example: linear anisotropic conductive medium

$$
D=\epsilon E, \quad B=\mu H, \quad J=\sigma E, \quad \rho=0 .
$$

σ is the conductivity, $\sigma \in L^{\infty}\left(\Omega ; \mathbb{R}^{3 \times 3}\right), \sigma \geq 0$. In time-harmonic formulation, in a (unbounded) Lipschitz set $\Omega \subset \mathbb{R}^{3}, F_{i} \in L^{2}(\Omega)^{3}$,

$$
\begin{cases}-i \sigma E+i \operatorname{curl} H-\omega \epsilon E=F_{1}, & \text { in } \Omega, \\ -i \operatorname{curl} E-\omega \mu H=F_{2}, & \text { in } \Omega, \\ v \times E=0, & \text { on } \partial \Omega\end{cases}
$$

$E \in H_{0}(\operatorname{curl}, \Omega):=\left\{u \in L^{2}(\Omega)^{3}:\right.$ curl $\left.u \in L^{2}(\Omega)^{3},\left.(v \times u)\right|_{\partial \Omega}=0\right\}$ $H \in H(\operatorname{curl}, \Omega):=\left\{u \in L^{2}(\Omega)^{3}: \operatorname{curl} u \in L^{2}(\Omega)^{3}\right\}$

Conductivity

Example: linear anisotropic conductive medium

$$
D=\epsilon E, \quad B=\mu H, \quad J=\sigma E, \quad \rho=0 .
$$

σ is the conductivity, $\sigma \in L^{\infty}\left(\Omega ; \mathbb{R}^{3 \times 3}\right), \sigma \geq 0$. In time-harmonic formulation, in a (unbounded) Lipschitz set $\Omega \subset \mathbb{R}^{3}, F_{i} \in L^{2}(\Omega)^{3}$,

$$
\begin{cases}-i \sigma E+i \operatorname{curl} H-\omega \epsilon E=F_{1}, & \text { in } \Omega \\ -i \operatorname{curl} E-\omega \mu H=F_{2}, & \text { in } \Omega \\ v \times E=0, & \text { on } \partial \Omega\end{cases}
$$

$E \in H_{0}(\operatorname{curl}, \Omega):=\left\{u \in L^{2}(\Omega)^{3}:\right.$ curl $\left.u \in L^{2}(\Omega)^{3},\left.(v \times u)\right|_{\partial \Omega}=0\right\}$ $H \in H(\operatorname{curl}, \Omega):=\left\{u \in L^{2}(\Omega)^{3}: \operatorname{curl} u \in L^{2}(\Omega)^{3}\right\}$
To keep in mind:

Conductivity

Example: linear anisotropic conductive medium

$$
D=\epsilon E, \quad B=\mu H, \quad J=\sigma E, \quad \rho=0 .
$$

σ is the conductivity, $\sigma \in L^{\infty}\left(\Omega ; \mathbb{R}^{3 \times 3}\right), \sigma \geq 0$. In time-harmonic formulation, in a (unbounded) Lipschitz set $\Omega \subset \mathbb{R}^{3}, F_{i} \in L^{2}(\Omega)^{3}$,

$$
\begin{cases}-i \sigma E+i \operatorname{curl} H-\omega \epsilon E=F_{1}, & \text { in } \Omega \\ -i \operatorname{curl} E-\omega \mu H=F_{2}, & \text { in } \Omega \\ v \times E=0, & \text { on } \partial \Omega\end{cases}
$$

$E \in H_{0}(\operatorname{curl}, \Omega):=\left\{u \in L^{2}(\Omega)^{3}:\right.$ curl $\left.u \in L^{2}(\Omega)^{3},\left.(v \times u)\right|_{\partial \Omega}=0\right\}$ $H \in H(\operatorname{curl}, \Omega):=\left\{u \in L^{2}(\Omega)^{3}: \operatorname{curl} u \in L^{2}(\Omega)^{3}\right\}$
To keep in mind:
(I) Helmholtz decomposition $L^{2}\left(\Omega, \mathbb{C}^{3}\right)=\nabla \dot{H}_{0}^{1}(\Omega) \oplus H(\operatorname{div} 0, \Omega)$;

Conductivity

Example: linear anisotropic conductive medium

$$
D=\epsilon E, \quad B=\mu H, \quad J=\sigma E, \quad \rho=0 .
$$

σ is the conductivity, $\sigma \in L^{\infty}\left(\Omega ; \mathbb{R}^{3 \times 3}\right), \sigma \geq 0$. In time-harmonic formulation, in a (unbounded) Lipschitz set $\Omega \subset \mathbb{R}^{3}, F_{i} \in L^{2}(\Omega)^{3}$,

$$
\begin{cases}-i \sigma E+i \operatorname{curl} H-\omega \epsilon E=F_{1}, & \text { in } \Omega, \\ -i \operatorname{curl} E-\omega \mu H=F_{2}, & \text { in } \Omega, \\ v \times E=0, & \text { on } \partial \Omega .\end{cases}
$$

$E \in H_{0}(\operatorname{curl}, \Omega):=\left\{u \in L^{2}(\Omega)^{3}:\right.$ curl $\left.u \in L^{2}(\Omega)^{3},\left.(v \times u)\right|_{\partial \Omega}=0\right\}$
$H \in H(\operatorname{curl}, \Omega):=\left\{u \in L^{2}(\Omega)^{3}: \operatorname{curl} u \in L^{2}(\Omega)^{3}\right\}$
To keep in mind:
(I) Helmholtz decomposition $L^{2}\left(\Omega, \mathbb{C}^{3}\right)=\nabla \dot{H}_{0}^{1}(\Omega) \oplus H(\operatorname{div} 0, \Omega)$;
(II) Weber's compactness result If Ω is bounded and Lipschitz, $H_{0}($ curl,$\Omega) \cap H(\operatorname{div}, \Omega)$ is compactly embedded in $L^{2}(\Omega)^{3}$.

Operator formulation in $L^{2}\left(\Omega ; \mathbb{C}^{3}\right) \times L^{2}\left(\Omega ; \mathbb{C}^{3}\right)$

Operator formulation in $L^{2}\left(\Omega ; \mathbb{C}^{3}\right) \times L^{2}\left(\Omega ; \mathbb{C}^{3}\right)$

$$
\begin{gathered}
V(\omega)=\left(\begin{array}{cc}
-\mathrm{i} \sigma & \text { i curl } \\
-\mathrm{i} \text { curl } & 0
\end{array}\right)-\omega\left(\begin{array}{ll}
\epsilon & 0 \\
0 & \mu
\end{array}\right), \quad \omega \in \mathbb{C}, \\
\operatorname{dom}(V(\omega))=\operatorname{dom}(V)=H_{0}(\text { curl, } \Omega) \oplus H(\text { curl, } \Omega) .
\end{gathered}
$$

Operator formulation in $L^{2}\left(\Omega ; \mathbb{C}^{3}\right) \times L^{2}\left(\Omega ; \mathbb{C}^{3}\right)$

$$
\begin{gathered}
V(\omega)=\left(\begin{array}{cc}
-\mathrm{i} \sigma & \mathrm{i} \text { curl } \\
-\mathrm{i} \text { curl } & 0
\end{array}\right)-\omega\left(\begin{array}{ll}
\epsilon & 0 \\
0 & \mu
\end{array}\right), \quad \omega \in \mathbb{C}, \\
\operatorname{dom}(V(\omega))=\operatorname{dom}(V)=H_{0}(\operatorname{curl}, \Omega) \oplus H(\operatorname{curl}, \Omega) .
\end{gathered}
$$

curl $l_{0}=(\text { curl })^{*}$ is the operator acting as curl on dom $\left(\right.$ curl $\left._{0}\right)=H_{0}($ curl $)$.

Operator formulation in $L^{2}\left(\Omega ; \mathbb{C}^{3}\right) \times L^{2}\left(\Omega ; \mathbb{C}^{3}\right)$

$$
\begin{gathered}
V(\omega)=\left(\begin{array}{cc}
-\mathrm{i} \sigma & \mathrm{i} \text { curl } \\
-\mathrm{i} \text { curl } & 0
\end{array}\right)-\omega\left(\begin{array}{ll}
\epsilon & 0 \\
0 & \mu
\end{array}\right), \quad \omega \in \mathbb{C}, \\
\operatorname{dom}(V(\omega))=\operatorname{dom}(V)=H_{0}(\operatorname{curl}, \Omega) \oplus H(\operatorname{curl}, \Omega) .
\end{gathered}
$$

curl $l_{0}=(\text { curl })^{*}$ is the operator acting as curl on dom $\left(\right.$ curl $\left.l_{0}\right)=H_{0}($ curl $)$.

Assumption. $\epsilon, \mu, \sigma \in L^{\infty}\left(\Omega, \operatorname{Sym}_{3}(\mathbb{R})\right)$, satisfying

$$
\begin{aligned}
& 0<\epsilon_{\min } \leq \eta \cdot \epsilon \eta \leq \epsilon_{\max }, \\
& 0<\mu_{\min } \leq \eta \cdot \mu \eta \leq \mu_{\max }, \quad \eta \in \mathbb{R}^{3},|\eta|=1 . \\
& 0 \leq \sigma_{\min } \leq \eta \cdot \sigma \eta \leq \sigma_{\max }
\end{aligned}
$$

Basic intuition

Constant coefficients, $\sigma \neq 0$ (non-selfadjoint)

Basic intuition

Constant coefficients, $\sigma \neq 0$ (non-selfadjoint)

$$
\begin{cases}-i \sigma E+i \operatorname{curl} H=\omega \epsilon E, & \text { in } \Omega, \\ -i \operatorname{curl} E=\omega \mu H, & \text { in } \Omega .\end{cases}
$$

Basic intuition

Constant coefficients, $\sigma \neq 0$ (non-selfadjoint)

$$
\begin{gathered}
\begin{cases}-i \sigma E+i \operatorname{curl} H=\omega \epsilon E, & \text { in } \Omega, \\
-i \operatorname{curl} E=\omega \mu H, & \text { in } \Omega .\end{cases} \\
\operatorname{curl}\left(\mu^{-1} \operatorname{curl} E\right)=\operatorname{curl}(\mathrm{i} \omega H)=\omega(\omega \epsilon+\mathrm{i} \sigma) E
\end{gathered}
$$

Basic intuition

Constant coefficients, $\sigma \neq 0$ (non-selfadjoint)

$$
\begin{gathered}
\begin{cases}-i \sigma E+i \operatorname{curl} H=\omega \epsilon E, & \text { in } \Omega, \\
-i \operatorname{curl} E=\omega \mu H, & \text { in } \Omega .\end{cases} \\
\operatorname{curl}\left(\mu^{-1} \operatorname{curl} E\right)=\operatorname{curl}(\mathrm{i} \omega H)=\omega(\omega \epsilon+\mathrm{i} \sigma) E \\
0=\operatorname{div} \operatorname{curl}\left(\mu^{-1} \operatorname{curl} E\right)=\omega(\omega \epsilon+\mathrm{i} \sigma) \operatorname{div} E
\end{gathered}
$$

Basic intuition

Constant coefficients, $\sigma \neq 0$ (non-selfadjoint)

$$
\begin{gathered}
\begin{cases}-i \sigma E+i \operatorname{curl} H=\omega \epsilon E, & \text { in } \Omega, \\
-i \operatorname{curl} E=\omega \mu H, & \text { in } \Omega .\end{cases} \\
\operatorname{curl}\left(\mu^{-1} \operatorname{curl} E\right)=\operatorname{curl}(\mathrm{i} \omega H)=\omega(\omega \epsilon+\mathrm{i} \sigma) E \\
0=\operatorname{div} \operatorname{curl}\left(\mu^{-1} \operatorname{curl} E\right)=\omega(\omega \epsilon+\mathrm{i} \sigma) \operatorname{div} E
\end{gathered}
$$

$\omega=0$ and $\omega=-\mathrm{i} \sigma / \epsilon$ "special points" (essential spectrum).

Some spectral theory

Essential spectrum of a linear operator A in the Hilbert space \mathcal{H} :

$$
\sigma_{e}(A):=\left\{\omega \in \mathbb{C}: \exists u_{n} \in \operatorname{dom}(A),\left\|u_{n}\right\|=1, u_{n} \rightharpoonup 0,\left\|(A-\omega) u_{n}\right\| \rightarrow 0\right\} .
$$

Some spectral theory

Essential spectrum of a linear operator A in the Hilbert space \mathcal{H} :

$$
\sigma_{e}(A):=\left\{\omega \in \mathbb{C}: \exists u_{n} \in \operatorname{dom}(A),\left\|u_{n}\right\|=1, u_{n} \rightharpoonup 0,\left\|(A-\omega) u_{n}\right\| \rightarrow 0\right\} .
$$

Let now $\omega \mapsto A(\omega)$ be an holomorphic family of operators.

Some spectral theory

Essential spectrum of a linear operator A in the Hilbert space \mathcal{H} :

$$
\sigma_{e}(A):=\left\{\omega \in \mathbb{C}: \exists u_{n} \in \operatorname{dom}(A),\left\|u_{n}\right\|=1, u_{n} \rightharpoonup 0,\left\|(A-\omega) u_{n}\right\| \rightarrow 0\right\} .
$$

Let now $\omega \mapsto A(\omega)$ be an holomorphic family of operators. We can define in a similar way

$$
\sigma_{e}(A)=\left\{\omega \in \mathbb{C}: 0 \in \sigma_{e}(A(\omega))\right\}
$$

Decomposition of the essential spectrum

Decomposition of the essential spectrum

Assume Ω unbounded, ϵ, μ, σ in $L^{\infty}\left(\Omega, \operatorname{Sym}_{3}(\mathbb{R})\right)$,

Decomposition of the essential spectrum

Assume Ω unbounded, ϵ, μ, σ in $L^{\infty}\left(\Omega, \operatorname{Sym}_{3}(\mathbb{R})\right)$, and exist $\epsilon_{\infty} \in \mathbb{R}_{>0}, \mu_{\infty} \in \mathbb{R}_{>0}$ s.t.

$$
\lim _{R \rightarrow \infty}\left\{\sup _{\| \| \|>R} \max \left(\| \epsilon(x)-\epsilon_{\infty} \text { id }\|,\| \mu(x)-\mu_{\infty} \text { id }\|,\| \sigma(x) \|\right)\right\}=0 .
$$

Decomposition of the essential spectrum

Assume Ω unbounded, ϵ, μ, σ in $L^{\infty}\left(\Omega, \operatorname{Sym}_{3}(\mathbb{R})\right)$, and exist $\epsilon_{\infty} \in \mathbb{R}_{>0}, \mu_{\infty} \in \mathbb{R}_{>0}$ s.t.

$$
\lim _{R \rightarrow \infty}\left\{\sup _{\| \| \|>R} \max \left(\| \epsilon(x)-\epsilon_{\infty} \text { id }\|,\| \mu(x)-\mu_{\infty} \text { id }\|,\| \sigma(x) \|\right)\right\}=0 .
$$

Define $\mathcal{L}(\omega)=\operatorname{curl} \mu^{-1} \operatorname{curl}_{0}-\omega(\omega \epsilon+\mathrm{i} \sigma)$ and

$$
L_{\infty}(\omega):=\mu_{\infty}^{-1} \text { curl curl }-\omega^{2} \epsilon_{\infty}, \quad \operatorname{dom}\left(L_{\infty}\right) \subset H_{0}(\operatorname{curl}, \Omega) \cap H(\operatorname{div} 0, \Omega) .
$$

Decomposition of the essential spectrum

Assume Ω unbounded, ϵ, μ, σ in $L^{\infty}\left(\Omega, \operatorname{Sym}_{3}(\mathbb{R})\right)$, and exist $\epsilon_{\infty} \in \mathbb{R}_{>0}, \mu_{\infty} \in \mathbb{R}_{>0}$ s.t.

$$
\lim _{R \rightarrow \infty}\left\{\sup _{\| \| \|>R} \max \left(\| \epsilon(x)-\epsilon_{\infty} \text { id }\|,\| \mu(x)-\mu_{\infty} \text { id }\|,\| \sigma(x) \|\right)\right\}=0 .
$$

Define $\mathcal{L}(\omega)=\operatorname{curl} \mu^{-1} \operatorname{curl}_{0}-\omega(\omega \epsilon+\mathrm{i} \sigma)$ and

$$
\begin{aligned}
& L_{\infty}(\omega):=\mu_{\infty}^{-1} \text { curl curl }_{0}-\omega^{2} \epsilon_{\infty}, \quad \operatorname{dom}\left(L_{\infty}\right) \subset H_{0}(\operatorname{curl}, \Omega) \cap H(\operatorname{div} 0, \Omega) . \\
& \mathcal{W}_{\nabla}(\omega):=P_{\nabla} \mathcal{L}(\omega) P_{\nabla}=-\omega P_{\nabla}(\omega \epsilon+\mathrm{i} \sigma) P_{\nabla}, \quad \operatorname{dom}\left(\mathcal{W}_{\nabla}\right)=\nabla \dot{H}_{0}^{1}(\Omega) .
\end{aligned}
$$

Decomposition of the essential spectrum

Assume Ω unbounded, ϵ, μ, σ in $L^{\infty}\left(\Omega, \operatorname{Sym}_{3}(\mathbb{R})\right)$, and exist $\epsilon_{\infty} \in \mathbb{R}_{>0}, \mu_{\infty} \in \mathbb{R}_{>0}$ s.t.

$$
\lim _{R \rightarrow \infty}\left\{\sup _{\| \| \|>R} \max \left(\| \epsilon(x)-\epsilon_{\infty} \text { id }\|,\| \mu(x)-\mu_{\infty} \text { id }\|,\| \sigma(x) \|\right)\right\}=0 .
$$

Define $\mathcal{L}(\omega)=\operatorname{curl} \mu^{-1} \operatorname{curl}_{0}-\omega(\omega \epsilon+\mathrm{i} \sigma)$ and

$$
\begin{aligned}
& L_{\infty}(\omega):=\mu_{\infty}^{-1} \text { curl curl }_{0}-\omega^{2} \epsilon_{\infty}, \quad \operatorname{dom}\left(L_{\infty}\right) \subset H_{0}(\operatorname{curl}, \Omega) \cap H(\operatorname{div} 0, \Omega) . \\
& \mathcal{W}_{\nabla}(\omega):=P_{\nabla} \mathcal{L}(\omega) P_{\nabla}=-\omega P_{\nabla}(\omega \epsilon+\mathrm{i} \sigma) P_{\nabla}, \quad \operatorname{dom}\left(\mathcal{W}_{\nabla}\right)=\nabla \dot{H}_{0}^{1}(\Omega) .
\end{aligned}
$$

Then: [Lassas '98], [ABMW '19], [BFMT '23]

$$
\sigma_{e}(V)=\sigma_{e}(\mathcal{L})=\sigma_{e}\left(L_{\infty}\right) \cup \sigma_{e}\left(\mathcal{W}_{\nabla}\right) \subset \mathbb{R} \cup i \mathbb{R}_{\leq 0}
$$

Non-constant coefficients at infinity

Non-constant coefficients at infinity

Setting in [FM'24]: domain with multiple cylindrical ends C_{i}, ϵ, μ asymptotically constant in each cylinder.

Non-constant coefficients at infinity

Setting in [FM'24]: domain with multiple cylindrical ends C_{i}, ϵ, μ asymptotically constant in each cylinder.

Main result:

Non-constant coefficients at infinity

Setting in [FM'24]: domain with multiple cylindrical ends C_{i}, ϵ, μ asymptotically constant in each cylinder.

Main result: the decomposition $\sigma_{e}(V)=\sigma_{e}\left(\mathcal{L}_{\infty}\right) \cup \sigma_{e}\left(\mathcal{W}_{\nabla}\right)$ still holds, with

$$
\begin{gathered}
\mathcal{L}_{\infty}(\omega)=\operatorname{curl} \mu_{\infty}^{-1} \text { curl }-\omega^{2} P_{\text {ker(div })} \epsilon_{\infty} \\
\epsilon_{\infty} \in C^{\infty}(\Omega), \quad \epsilon_{\infty}=c_{i}=\text { const } \quad \text { in each cylinder }
\end{gathered}
$$

Non-constant coefficients at infinity

Setting in [FM'24]: domain with multiple cylindrical ends C_{i}, ϵ, μ asymptotically constant in each cylinder.

Main result: the decomposition $\sigma_{e}(V)=\sigma_{e}\left(\mathcal{L}_{\infty}\right) \cup \sigma_{e}\left(\mathcal{W}_{\nabla}\right)$ still holds, with

$$
\begin{gathered}
\mathcal{L}_{\infty}(\omega)=\operatorname{curl} \mu_{\infty}^{-1} \text { curl }-\omega^{2} P_{\text {ker(div })} \epsilon_{\infty} \\
\epsilon_{\infty} \in C^{\infty}(\Omega), \quad \epsilon_{\infty}=c_{i}=\text { const } \quad \text { in each cylinder }
\end{gathered}
$$

Glazman decomposition $\Rightarrow \sigma_{e}\left(\mathcal{L}_{\infty}\right)=\bigcup_{i} \sigma_{e}\left(\mathcal{L}_{\infty, i}\right)$.

Non-constant coefficients at infinity

Setting in [FM'24]: domain with multiple cylindrical ends C_{i}, ϵ, μ asymptotically constant in each cylinder.

Main result: the decomposition $\sigma_{e}(V)=\sigma_{e}\left(\mathcal{L}_{\infty}\right) \cup \sigma_{e}\left(\mathcal{W}_{\nabla}\right)$ still holds, with

$$
\begin{gathered}
\mathcal{L}_{\infty}(\omega)=\operatorname{curl} \mu_{\infty}^{-1} \operatorname{curl}-\omega^{2} P_{\text {ker(div })} \epsilon_{\infty} \\
\epsilon_{\infty} \in C^{\infty}(\Omega), \quad \epsilon_{\infty}=c_{i}=\text { const } \quad \text { in each cylinder }
\end{gathered}
$$

Glazman decomposition $\Rightarrow \sigma_{e}\left(\mathcal{L}_{\infty}\right)=\bigcup_{i} \sigma_{e}\left(\mathcal{L}_{\infty, i}\right)$.
(!) Immediate Glazman decomposition on V fails.

Rational dependence on the frequency

- Systems in the form

$$
V(\omega)=\left(\begin{array}{cc}
-\mathrm{i} \sigma & \mathrm{i} \text { curl } \\
-\mathrm{i} \text { curl } \mathrm{l}_{0} & 0
\end{array}\right)-\omega \mathbb{I}+\left(\begin{array}{cc}
\frac{\theta_{\theta}^{2}}{\left(\omega+i \gamma_{e}\right)} & 0 \\
0 & \frac{\theta_{m}^{2}}{\left(\omega+\mathrm{i} \gamma_{m}\right)}
\end{array}\right), \quad \omega \in \mathbb{C} \backslash\left\{-\mathrm{i} \gamma_{e},-\mathrm{i} \gamma_{m}\right\},
$$

\leadsto Drude-Lorentz model for EM waves in metamaterials [FM'23]

Rational dependence on the frequency

- Systems in the form

$$
V(\omega)=\left(\begin{array}{cc}
-\mathrm{i} \sigma & \mathrm{i} \text { curl } \\
-\mathrm{i} \text { curl } \mathrm{l}_{0} & 0
\end{array}\right)-\omega \mathbb{I}+\left(\begin{array}{cc}
\frac{\theta_{\theta}^{2}}{\left(\omega+i \gamma_{e}\right)} & 0 \\
0 & \frac{\theta_{m}^{2}}{\left(\omega+\mathrm{i} \gamma_{m}\right)}
\end{array}\right), \quad \omega \in \mathbb{C} \backslash\left\{-\mathrm{i} \gamma_{e},-\mathrm{i} \gamma_{m}\right\},
$$

\leadsto Drude-Lorentz model for EM waves in metamaterials [FM'23]

A model for the Faraday effect

A model for the Faraday effect

Consider an horizontal layer of periodically distributed spheres kept at 0 potential.

A model for the Faraday effect

Consider an horizontal layer of periodically distributed spheres kept at 0 potential. The spheres have radius of order ϵ^{2} and the distance among them is of order ϵ.

A model for the Faraday effect

Consider an horizontal layer of periodically distributed spheres kept at 0 potential. The spheres have radius of order ϵ^{2} and the distance among them is of order ϵ. Consider the Maxwell system curl μ^{-1} curl $E-\omega(\omega \epsilon+i \sigma) E=F$ in $\Omega \backslash B_{\epsilon}$, and pass to the limit as $\epsilon \rightarrow 0^{+}$.

A model for the Faraday effect

Consider an horizontal layer of periodically distributed spheres kept at 0 potential. The spheres have radius of order ϵ^{2} and the distance among them is of order ϵ.
Consider the Maxwell system curl μ^{-1} curl $E-\omega(\omega \epsilon+i \sigma) E=F$ in $\Omega \backslash B_{\epsilon}$, and pass to the limit as $\epsilon \rightarrow 0^{+}$.

In the limit we obtain [FM hs]

In the limit we obtain [FM hs]

$$
\begin{cases}\operatorname{curl} \mu^{-1} \operatorname{curl} E-\omega(\omega \epsilon+\mathrm{i} \sigma) E=F, & \text { in } \Omega \backslash \Sigma, \\ v \times E \times v=0, & \text { on } \partial \Omega, \\ {[v \times E \times v]_{\Sigma}=0,} & \text { on } \Sigma, \\ {\left[v \times \mu^{-1} \text { curl } E\right]_{\Sigma}=\left.\alpha^{2} \Theta(v \times E \times v)\right|_{\Sigma,},} & \text { on } \Sigma,\end{cases}
$$

where $[v \times \Psi]_{\Sigma}=v^{+} \times \Psi^{+}+v^{-} \times \Psi^{-}$is the Sobolev jump of the tangential traces across Σ, and $\Theta:=J^{*} \Theta_{0} J$, Θ_{0} is a bounded positive operator in $L_{t}^{2}(\Sigma)$, J isomorphism between $H^{-1 / 2}\left(\operatorname{curl}_{\Sigma}, \Sigma\right)$ and $L_{t}^{2}(\Sigma)$.

In the limit we obtain [FM hs]

$$
\begin{cases}\operatorname{curl} \mu^{-1} \operatorname{curl} E-\omega(\omega \epsilon+\mathrm{i} \sigma) E=F, & \text { in } \Omega \backslash \Sigma, \\ v \times E \times v=0, & \text { on } \partial \Omega, \\ {[v \times E \times v]_{\Sigma}=0,} & \text { on } \Sigma, \\ {\left[v \times \mu^{-1} \text { curl } E\right]_{\Sigma}=\left.\alpha^{2} \Theta(v \times E \times v)\right|_{\Sigma},} & \text { on } \Sigma,\end{cases}
$$

where $[v \times \Psi]_{\Sigma}=v^{+} \times \Psi^{+}+v^{-} \times \Psi^{-}$is the Sobolev jump of the tangential traces across Σ, and $\Theta:=J^{*} \Theta_{0} J, \Theta_{0}$ is a bounded positive operator in $L_{t}^{2}(\Sigma), J$ isomorphism between $H^{-1 / 2}\left(\operatorname{curl}_{\Sigma}, \Sigma\right)$ and $L_{t}^{2}(\Sigma)$.
We denote by $V_{\Omega}(\omega)$ the operator associated with the previous BVP. Here Ω can be unbounded; if so, assume ϵ, μ, σ asymp. constant.

In the limit we obtain [FM hs]

$$
\begin{cases}\operatorname{curl} \mu^{-1} \operatorname{curl} E-\omega(\omega \epsilon+\mathrm{i} \sigma) E=F, & \text { in } \Omega \backslash \Sigma, \\ v \times E \times v=0, & \text { on } \partial \Omega, \\ {[v \times E \times v]_{\Sigma}=0,} & \text { on } \Sigma, \\ {\left[v \times \mu^{-1} \text { curl } E\right]_{\Sigma}=\left.\alpha^{2} \Theta(v \times E \times v)\right|_{\Sigma},} & \text { on } \Sigma,\end{cases}
$$

where $[v \times \Psi]_{\Sigma}=v^{+} \times \Psi^{+}+v^{-} \times \Psi^{-}$is the Sobolev jump of the tangential traces across Σ, and $\Theta:=J^{*} \Theta_{0} J, \Theta_{0}$ is a bounded positive operator in $L_{t}^{2}(\Sigma), J$ isomorphism between $H^{-1 / 2}\left(\operatorname{curl}_{\Sigma}, \Sigma\right)$ and $L_{t}^{2}(\Sigma)$.
We denote by $V_{\Omega}(\omega)$ the operator associated with the previous BVP. Here Ω can be unbounded; if so, assume ϵ, μ, σ asymp. constant.

For which frequencies $\omega \in \mathbb{C}$ can we solve this transmission problem?

The problem of the essential spectrum

Basic intuition:

The problem of the essential spectrum

Basic intuition:
If " $\alpha=+\infty$ ", we recover the problem $V_{0}(\omega) E=F$,

The problem of the essential spectrum

Basic intuition:
If " $\alpha=+\infty$ ", we recover the problem $V_{0}(\omega) E=F$, where

$$
\begin{cases}\operatorname{curl} \mu^{-1} \operatorname{curl} E-\omega(\omega \epsilon+\mathrm{i} \sigma) E=F, & \text { in } \Omega \backslash \Sigma \\ v \times E \times v=0, & \text { on } \partial \Omega \cup \Sigma .\end{cases}
$$

The problem of the essential spectrum

Basic intuition:
If " $\alpha=+\infty$ ", we recover the problem $V_{0}(\omega) E=F$, where

$$
\begin{cases}\operatorname{curl} \mu^{-1} \operatorname{curl} E-\omega(\omega \epsilon+\mathrm{i} \sigma) E=F, & \text { in } \Omega \backslash \Sigma \\ v \times E \times v=0, & \text { on } \partial \Omega \cup \Sigma\end{cases}
$$

This corresponds to a perfectly shielding Faraday layer Σ.

The problem of the essential spectrum

Basic intuition:
If " $\alpha=+\infty$ ", we recover the problem $V_{0}(\omega) E=F$, where

$$
\begin{cases}\operatorname{curl} \mu^{-1} \operatorname{curl} E-\omega(\omega \epsilon+\mathrm{i} \sigma) E=F, & \text { in } \Omega \backslash \Sigma \\ v \times E \times v=0, & \text { on } \partial \Omega \cup \Sigma\end{cases}
$$

This corresponds to a perfectly shielding Faraday layer Σ.
Rough statement: with $C(\omega, \alpha)=[v \times \operatorname{curl} P(\omega)]_{\Sigma}-\alpha^{2} \Theta$,

The problem of the essential spectrum

Basic intuition:
If " $\alpha=+\infty$ ", we recover the problem $V_{0}(\omega) E=F$, where

$$
\begin{cases}\operatorname{curl} \mu^{-1} \operatorname{curl} E-\omega(\omega \epsilon+\mathrm{i} \sigma) E=F, & \text { in } \Omega \backslash \Sigma \\ v \times E \times v=0, & \text { on } \partial \Omega \cup \Sigma\end{cases}
$$

This corresponds to a perfectly shielding Faraday layer Σ.
Rough statement: with $C(\omega, \alpha)=[v \times \operatorname{curl} P(\omega)]_{\Sigma}-\alpha^{2} \Theta$,

$$
\sigma_{e}\left(V_{\Omega}\right)=\sigma_{e}\left(V_{0}\right) \cup \sigma_{e}(C(\cdot, \alpha))
$$

A more precise statement

Notation: we will write $\pi_{\Sigma}(E):=v \times E \times\left. v\right|_{\Sigma}$.

A more precise statement

Notation: we will write $\pi_{\Sigma}(E):=v \times E \times\left. v\right|_{\Sigma}$. Define:

$$
C(\omega, \alpha) h=\left[v \times \mu^{-1} \operatorname{curl} P(\omega) h\right]_{\Sigma}-\alpha^{2} \Theta h, \quad h \in \pi_{\Sigma}\left(H_{0}(\text { curl }, \Omega)\right)
$$

A more precise statement

Notation: we will write $\pi_{\Sigma}(E):=v \times E \times\left. v\right|_{\Sigma}$. Define:

$$
C(\omega, \alpha) h=\left[v \times \mu^{-1} \operatorname{curl} P(\omega) h\right]_{\Sigma}-\alpha^{2} \Theta h, \quad h \in \pi_{\Sigma}\left(H_{0}(\text { curl }, \Omega)\right)
$$

where $H:=P(\omega) h$ is the extension of h to Ω, solving

$$
\begin{cases}\operatorname{curl} \mu^{-1} \operatorname{curl} H-\omega(\omega \epsilon+\mathrm{i} \sigma) H=0, & \text { in } \Omega \backslash \Sigma \\ \pi_{\Sigma}(H)=h, & \text { on } \Sigma, \\ \pi_{\Sigma}(H)=0 . & \text { on } \partial \Omega .\end{cases}
$$

A more precise statement

Notation: we will write $\pi_{\Sigma}(E):=v \times E \times\left. v\right|_{\Sigma}$. Define:

$$
C(\omega, \alpha) h=\left[v \times \mu^{-1} \operatorname{curl} P(\omega) h\right]_{\Sigma}-\alpha^{2} \Theta h, \quad h \in \pi_{\Sigma}\left(H_{0}(\operatorname{curl}, \Omega)\right)
$$

where $H:=P(\omega) h$ is the extension of h to Ω, solving

$$
\begin{cases}\operatorname{curl} \mu^{-1} \operatorname{curl} H-\omega(\omega \epsilon+\mathrm{i} \sigma) H=0, & \text { in } \Omega \backslash \Sigma \\ \pi_{\Sigma}(H)=h, & \text { on } \Sigma, \\ \pi_{\Sigma}(H)=0 . & \text { on } \partial \Omega .\end{cases}
$$

Let also

$$
V_{0}(\omega) E:=\operatorname{curl} \mu^{-1} \operatorname{curl} E-\omega(\omega \epsilon+\mathrm{i} \sigma) E, \quad \pi_{\Sigma}(E)=0 .
$$

A more precise statement

Notation: we will write $\pi_{\Sigma}(E):=v \times E \times\left. v\right|_{\Sigma}$. Define:

$$
C(\omega, \alpha) h=\left[v \times \mu^{-1} \operatorname{curl} P(\omega) h\right]_{\Sigma}-\alpha^{2} \Theta h, \quad h \in \pi_{\Sigma}\left(H_{0}(\operatorname{curl}, \Omega)\right)
$$

where $H:=P(\omega) h$ is the extension of h to Ω, solving

$$
\begin{cases}\operatorname{curl} \mu^{-1} \operatorname{curl} H-\omega(\omega \epsilon+\mathrm{i} \sigma) H=0, & \text { in } \Omega \backslash \Sigma \\ \pi_{\Sigma}(H)=h, & \text { on } \Sigma, \\ \pi_{\Sigma}(H)=0 . & \text { on } \partial \Omega .\end{cases}
$$

Let also

$$
V_{0}(\omega) E:=\operatorname{curl} \mu^{-1} \operatorname{curl} E-\omega(\omega \epsilon+\mathrm{i} \sigma) E, \quad \pi_{\Sigma}(E)=0 .
$$

Then

$$
\begin{gathered}
\sigma_{e}\left(V_{\Omega}\right) \supset \sigma_{e}\left(V_{0}\right) \cup\left(\sigma_{e}(C(\cdot, \alpha)) \cap \rho\left(V_{0}\right)\right) \\
\sigma_{e}\left(V_{\Omega}\right) \subset \sigma_{e}\left(V_{0}\right) \cup\left(\sigma_{e}(C(\cdot, \alpha)) \cap \rho\left(V_{0}\right)\right) \cup \sigma_{d}\left(V_{0}\right)
\end{gathered}
$$

If the open problem holds, i.e., no disks of eigenvalues of V_{Ω}, then

$$
\sigma_{e}\left(V_{\Omega}\right)=\sigma_{e}\left(V_{0}\right) \cup \tilde{\sigma}_{e}(C(\cdot, \alpha))
$$

$\tilde{\sigma}_{e}(C(\cdot, \alpha))$ is the extended essential spectrum of the operator family C.
$\left(\sigma_{e}(C(\cdot, \alpha)) \cap \rho\left(V_{0}\right)\right)$ is not empty even when Σ is a smooth surface!
$\left(\sigma_{e}(C(\cdot, \alpha)) \cap \rho\left(V_{0}\right)\right)$ is not empty even when Σ is a smooth surface! Related to [Cacciapuoti, Pankrashkin, Posilicano 2019]
$\left(\sigma_{e}(C(\cdot, \alpha)) \cap \rho\left(V_{0}\right)\right)$ is not empty even when Σ is a smooth surface! Related to [Cacciapuoti, Pankrashkin, Posilicano 2019]

$$
A_{\mu}=-\operatorname{div}\left(h_{\mu} \nabla\right), \quad \text { in } \Omega, \quad h_{\mu}(x)= \begin{cases}1, & \text { in } \Omega_{+} \\ -\mu, & \text { in } \Omega_{-}\end{cases}
$$

$\left(\sigma_{e}(C(\cdot, \alpha)) \cap \rho\left(V_{0}\right)\right)$ is not empty even when Σ is a smooth surface! Related to [Cacciapuoti, Pankrashkin, Posilicano 2019]

$$
A_{\mu}=-\operatorname{div}\left(h_{\mu} \nabla\right), \quad \text { in } \Omega, \quad h_{\mu}(x)= \begin{cases}1, & \text { in } \Omega_{+} \\ -\mu, & \text { in } \Omega_{-} .\end{cases}
$$

In bounded domains $\Omega \subset \mathbb{R}^{N}$,

$$
\sigma_{e}\left(A_{\mu}\right)= \begin{cases}0, & \text { if } \mu \neq 1, \\ \{0\}, & \text { if } \mu=1, N=2, \\ \supset\{0\}, & \text { if } \mu=1, N \geq 3,+ \text { geom. assumption }\end{cases}
$$

$\left(\sigma_{e}(C(\cdot, \alpha)) \cap \rho\left(V_{0}\right)\right)$ is not empty even when Σ is a smooth surface!
Related to [Cacciapuoti, Pankrashkin, Posilicano 2019]

$$
A_{\mu}=-\operatorname{div}\left(h_{\mu} \nabla\right), \quad \text { in } \Omega, \quad h_{\mu}(x)= \begin{cases}1, & \text { in } \Omega_{+} \\ -\mu, & \text { in } \Omega_{-} .\end{cases}
$$

In bounded domains $\Omega \subset \mathbb{R}^{N}$,

$$
\sigma_{e}\left(A_{\mu}\right)= \begin{cases}\emptyset, & \text { if } \mu \neq 1, \\ \{0\}, & \text { if } \mu=1, N=2, \\ \supset\{0\}, & \text { if } \mu=1, N \geq 3,+ \text { geom. assumption }\end{cases}
$$

In this setting the analogue of C is

$$
\Psi_{1}=\frac{1}{2}\left(D t N^{-}-\mu D t N^{+}\right)
$$

This is always a ψ DO of order 1 , when $\mu \neq 1$.
$\left(\sigma_{e}(C(\cdot, \alpha)) \cap \rho\left(V_{0}\right)\right)$ is not empty even when Σ is a smooth surface! Related to [Cacciapuoti, Pankrashkin, Posilicano 2019]

$$
A_{\mu}=-\operatorname{div}\left(h_{\mu} \nabla\right), \quad \text { in } \Omega, \quad h_{\mu}(x)= \begin{cases}1, & \text { in } \Omega_{+} \\ -\mu, & \text { in } \Omega_{-} .\end{cases}
$$

In bounded domains $\Omega \subset \mathbb{R}^{N}$,

$$
\sigma_{e}\left(A_{\mu}\right)= \begin{cases}\emptyset, & \text { if } \mu \neq 1, \\ \{0\}, & \text { if } \mu=1, N=2, \\ \supset\{0\}, & \text { if } \mu=1, N \geq 3,+ \text { geom. assumption }\end{cases}
$$

In this setting the analogue of C is

$$
\Psi_{1}=\frac{1}{2}\left(D t N^{-}-\mu D t N^{+}\right)
$$

This is always a Ψ DO of order 1 , when $\mu \neq 1$. When $\mu=1, N \geq 3$,
$\left(\operatorname{DtN}^{-}-\operatorname{DtN}^{+}\right)=\sqrt{-\Delta_{\Sigma}}+B^{-}+C^{-}-\sqrt{-\Delta_{\Sigma}}-B^{+}-C^{+}=B^{-}-B^{+}+\left(C^{-}-C^{+}\right)$
where $B^{ \pm}$are $\Psi D O$ s of order 0 and $C^{ \pm}$are smoothing.

For Maxwell: $D_{t N^{ \pm}}$are NOT Ψ DOs of order 1.

For Maxwell: $\operatorname{DtN}^{ \pm}$are NOT Ψ DOs of order 1. $\operatorname{DtN}^{ \pm}(\omega)=v^{ \pm} \times \mu^{-1}$ curl $P^{ \pm}(\omega)$ is believed to act on $H^{-1 / 2}\left(\operatorname{curl}_{\Sigma}, \Sigma\right) \oplus H^{-1 / 2}\left(\operatorname{div}_{\Sigma}, \Sigma\right)$ as

$$
\left(\begin{array}{cc}
A^{ \pm} & 0 \\
0 & K^{ \pm}
\end{array}\right)
$$

where $A^{ \pm}$is a $\Psi D O$ of order 1 , while $K^{ \pm}$is a $\Psi D O$ of order -1 .

For Maxwell: $\operatorname{DtN}^{ \pm}$are NOT Ψ DOs of order 1. $\operatorname{DtN}^{ \pm}(\omega)=v^{ \pm} \times \mu^{-1}$ curl $P^{ \pm}(\omega)$ is believed to act on $H^{-1 / 2}\left(\operatorname{curl}_{\Sigma}, \Sigma\right) \oplus H^{-1 / 2}\left(\operatorname{div}_{\Sigma}, \Sigma\right)$ as

$$
\left(\begin{array}{cc}
A^{ \pm} & 0 \\
0 & K^{ \pm}
\end{array}\right)
$$

where $A^{ \pm}$is a $\Psi D O$ of order 1 , while $K^{ \pm}$is a $\Psi D O$ of order -1 .

Spectral enclosure

Let $\lambda_{\text {min }}^{\Omega}:=\min \sigma\left(\right.$ curl curlo $\left.\left.\right|_{H(\text { div } 0, \Omega)}\right) \geq 0$

Spectral enclosure

Let $\lambda_{\text {min }}^{\Omega}:=\min \sigma\left(\right.$ curl curl $\left.\left._{0}\right|_{H(\text { div } 0, \Omega)}\right) \geq 0$

Theorem

The following spectral enclosure holds

$$
\sigma(V) \subset \mathrm{i}\left[-\frac{\sigma_{\max }}{\epsilon_{\min }}, 0\right] \cup\left\{\omega \in \mathbb{C} \backslash \mathrm{i} \mathbb{R}: \operatorname{Im} \omega \in\left[-\frac{1}{2} \frac{\sigma_{\max }}{\epsilon_{\min }},-\frac{1}{2} \frac{\sigma_{\min }}{\epsilon_{\max }}\right],\right.
$$

$$
\left.(\operatorname{Re} \omega)^{2}-3(\operatorname{Im} \omega)^{2}+2 \frac{\sigma_{\max }}{\epsilon_{\min }}|\operatorname{Im} \omega| \geq \frac{\lambda_{\min }^{\Omega}}{\epsilon_{\max } \mu_{\max }}\right\}
$$

Spectral enclosure

Let $\lambda_{\text {min }}^{\Omega}:=\min \sigma\left(\right.$ curl curl $\left.\left._{0}\right|_{H(\text { div } 0, \Omega)}\right) \geq 0$

Theorem

The following spectral enclosure holds

$$
\begin{aligned}
\sigma(V) \subset i\left[-\frac{\sigma_{\max }}{\epsilon_{\min }}, 0\right] \cup\{\omega \in \mathbb{C} \backslash i \mathbb{R}: & \operatorname{Im} \omega \in\left[-\frac{1}{2} \frac{\sigma_{\max }}{\epsilon_{\min }},-\frac{1}{2} \frac{\sigma_{\min }}{\epsilon_{\max }}\right] \\
& \left.(\operatorname{Re} \omega)^{2}-3(\operatorname{Im} \omega)^{2}+2 \frac{\sigma_{\max }}{\epsilon_{\min }}|\operatorname{Im} \omega| \geq \frac{\lambda_{\min }^{\Omega}}{\epsilon_{\max } \mu_{\max }}\right\}
\end{aligned}
$$

Idea of the proof:

Spectral enclosure

Let $\lambda_{\text {min }}^{\Omega}:=\min \sigma\left(\right.$ curl curl $\left.\left._{0}\right|_{H(\text { div } 0, \Omega)}\right) \geq 0$

Theorem

The following spectral enclosure holds

$$
\begin{aligned}
\sigma(V) \subset i\left[-\frac{\sigma_{\max }}{\epsilon_{\min }}, 0\right] \cup\{\omega \in \mathbb{C} \backslash i \mathbb{R}: & \operatorname{Im} \omega \in\left[-\frac{1}{2} \frac{\sigma_{\max }}{\epsilon_{\min }},-\frac{1}{2} \frac{\sigma_{\min }}{\epsilon_{\max }}\right] \\
& \left.(\operatorname{Re} \omega)^{2}-3(\operatorname{Im} \omega)^{2}+2 \frac{\sigma_{\max }}{\epsilon_{\min }}|\operatorname{Im} \omega| \geq \frac{\lambda_{\min }^{\Omega}}{\epsilon_{\max } \mu_{\max }}\right\}
\end{aligned}
$$

Idea of the proof:

- $\sigma(V) \subset \overline{W(V)}=\mathbb{R} \times\left[-\frac{\sigma_{\max }}{\epsilon_{\min }}, 0\right]$.

Spectral enclosure

Let $\lambda_{\text {min }}^{\Omega}:=\min \sigma\left(\right.$ curl curl $\left.\left._{0}\right|_{H(\text { div } 0, \Omega)}\right) \geq 0$

Theorem

The following spectral enclosure holds

$$
\begin{aligned}
\sigma(V) \subset i\left[-\frac{\sigma_{\max }}{\epsilon_{\min }}, 0\right] \cup\{\omega \in \mathbb{C} \backslash i \mathbb{R}: & \operatorname{Im} \omega \in\left[-\frac{1}{2} \frac{\sigma_{\max }}{\epsilon_{\min }},-\frac{1}{2} \frac{\sigma_{\min }}{\epsilon_{\max }}\right] \\
& \left.(\operatorname{Re} \omega)^{2}-3(\operatorname{Im} \omega)^{2}+2 \frac{\sigma_{\max }}{\epsilon_{\min }}|\operatorname{lm} \omega| \geq \frac{\lambda_{\min }^{\Omega}}{\epsilon_{\max } \mu_{\max }}\right\}
\end{aligned}
$$

Idea of the proof:

- $\sigma(V) \subset \overline{W(V)}=\mathbb{R} \times\left[-\frac{\sigma_{\max }}{\epsilon_{\min }}, 0\right]$.
- $V \mathcal{J}$-selfadjoint \Rightarrow
$\sigma(V)=\sigma_{\text {app }}(V)=\left\{\omega \in \mathbb{C}: \exists u_{n} \in \operatorname{dom}(V),\left\|u_{n}\right\|=1, V(\omega) u_{n} \rightarrow 0\right\}$

Spectral enclosure

Let $\lambda_{\text {min }}^{\Omega}:=\min \sigma\left(\right.$ curl curlo $\left.\left.\right|_{H(\text { div } 0, \Omega)}\right) \geq 0$

Theorem

The following spectral enclosure holds

$$
\begin{aligned}
\sigma(V) \subset \mathrm{i}\left[-\frac{\sigma_{\max }}{\epsilon_{\min }}, 0\right] \cup\{\omega \in \mathbb{C} \backslash \mathrm{i} \mathbb{R}: & \operatorname{Im} \omega \in\left[-\frac{1}{2} \frac{\sigma_{\max }}{\epsilon_{\min }},-\frac{1}{2} \frac{\sigma_{\min }}{\epsilon_{\max }}\right], \\
& \left.(\operatorname{Re} \omega)^{2}-3(\operatorname{Im} \omega)^{2}+2 \frac{\sigma_{\max }}{\epsilon_{\min }}|\operatorname{Im} \omega| \geq \frac{\lambda_{\min }^{\Omega}}{\epsilon_{\max } \mu_{\max }}\right\}
\end{aligned}
$$

Idea of the proof:

- $\sigma(V) \subset \overline{W(V)}=\mathbb{R} \times\left[-\frac{\sigma_{\max }}{\epsilon_{\min }}, 0\right]$.
- $V \mathcal{J}$-selfadjoint \Rightarrow
$\sigma(V)=\sigma_{\text {app }}(V)=\left\{\omega \in \mathbb{C}: \exists u_{n} \in \operatorname{dom}(V),\left\|u_{n}\right\|=1, V(\omega) u_{n} \rightarrow 0\right\}$
- $\left(u_{n}\right)_{n}$ almost satisfies (in a weak sense) curl $\left(\mu^{-1}\right.$ curl $\left._{0} u_{n}^{1}\right)-\omega(\omega \epsilon+\mathrm{i} \sigma) u_{n}^{1}=0$. Look at the numerical range of this operator.

Spectral enclosure

Let $\lambda_{\text {min }}^{\Omega}:=\min \sigma\left(\right.$ curl curl $\left.\left._{0}\right|_{H(\text { div } 0, \Omega)}\right) \geq 0$

Theorem

The following spectral enclosure holds

$$
\begin{aligned}
\sigma(V) \subset i\left[-\frac{\sigma_{\max }}{\epsilon_{\min }}, 0\right] \cup\{\omega \in \mathbb{C} \backslash i \mathbb{R}: & \operatorname{Im} \omega \in\left[-\frac{1}{2} \frac{\sigma_{\max }}{\epsilon_{\min }},-\frac{1}{2} \frac{\sigma_{\min }}{\epsilon_{\max }}\right] \\
& \left.(\operatorname{Re} \omega)^{2}-3(\operatorname{Im} \omega)^{2}+2 \frac{\sigma_{\max }}{\epsilon_{\min }}|\operatorname{lm} \omega| \geq \frac{\lambda_{\min }^{\Omega}}{\epsilon_{\max } \mu_{\max }}\right\}
\end{aligned}
$$

Idea of the proof:

- $\sigma(V) \subset \overline{W(V)}=\mathbb{R} \times\left[-\frac{\sigma_{\max }}{\epsilon_{\min }}, 0\right]$.
- $V \mathcal{J}$-selfadjoint \Rightarrow
$\sigma(V)=\sigma_{\text {app }}(V)=\left\{\omega \in \mathbb{C}: \exists u_{n} \in \operatorname{dom}(V),\left\|u_{n}\right\|=1, V(\omega) u_{n} \rightarrow 0\right\}$
- $\left(u_{n}\right)_{n}$ almost satisfies (in a weak sense) curl $\left(\mu^{-1}\right.$ curl $\left._{0} u_{n}^{1}\right)-\omega(\omega \epsilon+\mathrm{i} \sigma) u_{n}^{1}=0$.

Look at the numerical range of this operator.

- Get rid of gradient fields to prove 'hole around 0 '

Relation between V and \mathcal{L}

Theorem

$$
\begin{aligned}
\sigma(V) \backslash\{0\} & =\sigma(\mathcal{L}) \backslash\{0\}, \quad \sigma_{r}(V)=\sigma_{r}(\mathcal{L})=\emptyset \\
\sigma_{p}(V) \backslash\{0\} & =\sigma_{p}(\mathcal{L}) \backslash\{0\}, \quad \sigma_{e}(V) \backslash\{0\}=\sigma_{e}(\mathcal{L}) \backslash\{0\}
\end{aligned}
$$

Relation between V and \mathcal{L}

Theorem

$$
\begin{aligned}
\sigma(V) \backslash\{0\} & =\sigma(\mathcal{L}) \backslash\{0\}, \quad \sigma_{r}(V)=\sigma_{r}(\mathcal{L})=\emptyset \\
\sigma_{p}(V) \backslash\{0\} & =\sigma_{p}(\mathcal{L}) \backslash\{0\}, \quad \sigma_{e}(V) \backslash\{0\}=\sigma_{e}(\mathcal{L}) \backslash\{0\}
\end{aligned}
$$

Idea of the proof.

Relation between V and \mathcal{L}

Theorem

$$
\begin{aligned}
\sigma(V) \backslash\{0\} & =\sigma(\mathcal{L}) \backslash\{0\}, \quad \sigma_{r}(V)=\sigma_{r}(\mathcal{L})=\emptyset \\
\sigma_{p}(V) \backslash\{0\} & =\sigma_{p}(\mathcal{L}) \backslash\{0\}, \quad \sigma_{e}(V) \backslash\{0\}=\sigma_{e}(\mathcal{L}) \backslash\{0\}
\end{aligned}
$$

Idea of the proof. First step: $\mathcal{L}(\omega)=$ curl μ^{-1} curl $_{0}-\omega(\omega \epsilon+\mathrm{i} \sigma)$ has an explicit representation
$\mathcal{L}(\omega)=\left(T_{0}^{*} T_{0}+I\right)^{1 / 2}\left(I+\left(T_{0}^{*} T_{0}+I\right)^{-1 / 2}(\mathcal{W}(\omega)-I)\left(T_{0}^{*} T_{0}+I\right)^{-1 / 2}\right)\left(T_{0}^{*} T_{0}+I\right)^{1 / 2} ;$
$T_{0}:=\mu^{-1 / 2} \operatorname{curl}_{0}, \mathcal{W}(\omega):=-\omega(\omega \epsilon+\mathrm{i} \sigma)$. Implies: curl $\mathcal{L}(\omega)^{-1}$ curl $_{0}$ is bounded for $\omega \in \rho(\mathcal{L})$.

Relation between V and \mathcal{L}

Theorem

$$
\begin{aligned}
\sigma(V) \backslash\{0\} & =\sigma(\mathcal{L}) \backslash\{0\}, \quad \sigma_{r}(V)=\sigma_{r}(\mathcal{L})=\emptyset \\
\sigma_{p}(V) \backslash\{0\} & =\sigma_{p}(\mathcal{L}) \backslash\{0\}, \quad \sigma_{e}(V) \backslash\{0\}=\sigma_{e}(\mathcal{L}) \backslash\{0\}
\end{aligned}
$$

Idea of the proof. First step: $\mathcal{L}(\omega)=$ curl μ^{-1} curl $_{0}-\omega(\omega \epsilon+\mathrm{i} \sigma)$ has an explicit representation
$\mathcal{L}(\omega)=\left(T_{0}^{*} T_{0}+I\right)^{1 / 2}\left(I+\left(T_{0}^{*} T_{0}+I\right)^{-1 / 2}(\mathcal{W}(\omega)-I)\left(T_{0}^{*} T_{0}+I\right)^{-1 / 2}\right)\left(T_{0}^{*} T_{0}+I\right)^{1 / 2} ;$
$T_{0}:=\mu^{-1 / 2} \operatorname{curl}_{0}, \mathcal{W}(\omega):=-\omega(\omega \epsilon+\mathrm{i} \sigma)$. Implies: curl $\mathcal{L}(\omega)^{-1}$ curl $_{0}$ is bounded for $\omega \in \rho(\mathcal{L})$.
Second step: use

$$
V(\omega)^{-1}=\left(\begin{array}{cc}
\omega \mathcal{L}(\omega)^{-1} & \mathrm{i} \overline{\mathcal{L}(\omega)^{-1} \operatorname{curl}} \mu^{-1} \\
-\mathrm{i} \mu^{-1} \operatorname{curl}_{0} \mathcal{L}(\omega)^{-1} & \omega^{-1}\left(-\mu^{-1}+\mu^{-1} \overline{\operatorname{curl}_{0} \mathcal{L}(\omega)^{-1} \operatorname{curl}} \mu^{-1}\right)
\end{array}\right)
$$

for $\omega \in \rho(V)$.

In the previous example $\sigma_{e}\left(\mathcal{W}_{\nabla}\right)=\left\{0,-\frac{i}{2},-i\right\}$. Why?

In the previous example $\sigma_{e}\left(\mathcal{W}_{\nabla}\right)=\left\{0,-\frac{i}{2},-\mathrm{i}\right\}$. Why?
Recall $\quad \mathcal{W}_{\nabla}(\omega)=-P_{\nabla}[\omega(\omega+\mathrm{i} \chi)] P_{\nabla}, \quad \chi(x)=\chi_{(0,1)}\left(x_{1}\right)$.

In the previous example $\sigma_{e}\left(\mathcal{W}_{\nabla}\right)=\left\{0,-\frac{\mathrm{i}}{2},-\mathrm{i}\right\}$. Why?
Recall $\quad \mathcal{W}_{\nabla}(\omega)=-P_{\nabla}[\omega(\omega+\mathrm{i} \chi)] P_{\nabla}, \quad \chi(x)=\chi_{(0,1)}\left(x_{1}\right)$.
Note that $P_{\nabla}=\nabla \Delta^{-1}$ div, with Δ Dirichlet Laplacian acting from $\dot{H}_{0}^{1}(\Omega)$ to $H^{-1}(\Omega)$. Equivalent to study

$$
-\operatorname{div}(\omega(\omega+\mathrm{i} \chi)) \nabla: \dot{H}_{0}^{1}(\Omega) \rightarrow H^{-1}(\Omega)
$$

In the previous example $\sigma_{e}\left(\mathcal{W}_{\nabla}\right)=\left\{0,-\frac{\mathrm{i}}{2},-\mathrm{i}\right\}$. Why?
Recall $\quad \mathcal{W}_{\nabla}(\omega)=-P_{\nabla}[\omega(\omega+\mathrm{i} \chi)] P_{\nabla}, \quad \chi(x)=\chi_{(0,1)}\left(x_{1}\right)$.
Note that $P_{\nabla}=\nabla \Delta^{-1}$ div, with Δ Dirichlet Laplacian acting from $\dot{H}_{0}^{1}(\Omega)$ to $H^{-1}(\Omega)$. Equivalent to study

$$
-\operatorname{div}(\omega(\omega+\mathrm{i} \chi)) \nabla: \dot{H}_{0}^{1}(\Omega) \rightarrow H^{-1}(\Omega)
$$

Note that for $\omega=0$ and $\omega=-\mathrm{i}, \omega(\omega+\mathrm{i} \chi)$ vanishes identically in a subdomain of Ω; we get essential spectrum.

In the previous example $\sigma_{e}\left(\mathcal{W}_{\nabla}\right)=\left\{0,-\frac{\mathrm{i}}{2},-\mathrm{i}\right\}$. Why?
Recall $\quad \mathcal{W}_{\nabla}(\omega)=-P_{\nabla}[\omega(\omega+\mathrm{i} \chi)] P_{\nabla}, \quad \chi(x)=\chi_{(0,1)}\left(x_{1}\right)$.
Note that $P_{\nabla}=\nabla \Delta^{-1}$ div, with Δ Dirichlet Laplacian acting from $\dot{H}_{0}^{1}(\Omega)$ to $H^{-1}(\Omega)$. Equivalent to study

$$
-\operatorname{div}(\omega(\omega+\mathrm{i} \chi)) \nabla: \dot{H}_{0}^{1}(\Omega) \rightarrow H^{-1}(\Omega)
$$

Note that for $\omega=0$ and $\omega=-\mathrm{i}, \omega(\omega+\mathrm{i} \chi)$ vanishes identically in a subdomain of Ω; we get essential spectrum.
For $\omega=-\mathrm{i} / 2$ we have $\omega^{2}=-\omega(\omega+\mathrm{i})$ (relative contrast $=-1$)...can construct black hole modes.

Case $\omega=-\mathrm{i} / 2$.

Case $\omega=-\mathrm{i} / 2$. By Glazman decomposition, one shows that
$-\operatorname{div}\left(\left(\omega+\mathrm{i} \chi_{K}\right) \nabla\right)$ is invertible $\Longleftrightarrow(-\mathrm{i} \omega+1) \Lambda_{L}-\mathrm{i} \omega \Lambda_{R}$ is invertible,

Case $\omega=-\mathrm{i} / 2$. By Glazman decomposition, one shows that $-\operatorname{div}\left(\left(\omega+\mathrm{i} \chi_{K}\right) \nabla\right)$ is invertible $\Longleftrightarrow(-\mathrm{i} \omega+1) \Lambda_{L}-\mathrm{i} \omega \Lambda_{R}$ is invertible, Fix a o.n. basis of $L^{2}\left(\left(0, L_{2}\right) \times\left(0, L_{3}\right)\right)$. Call it $\left(\psi_{n}\right)_{n}$. Set $\omega=-\mathrm{i} v$ with $v \in(0,1)$.

Case $\omega=-\mathrm{i} / 2$. By Glazman decomposition, one shows that
$-\operatorname{div}\left(\left(\omega+\mathrm{i} \chi_{K}\right) \nabla\right)$ is invertible $\Longleftrightarrow(-\mathrm{i} \omega+1) \Lambda_{L}-\mathrm{i} \omega \Lambda_{R}$ is invertible,
Fix a o.n. basis of $L^{2}\left(\left(0, L_{2}\right) \times\left(0, L_{3}\right)\right)$. Call it $\left(\psi_{n}\right)_{n}$. Set $\omega=-\mathrm{i} v$ with $v \in(0,1)$. Then

$$
(-\mathrm{i} \omega+1) \wedge_{L}-\mathrm{i} \omega \wedge_{R}=\operatorname{diag}\left(\left(\kappa_{n}\left((1-v) \operatorname{coth}\left(\kappa_{n}\right)-v\right)\right)_{n \in \mathbb{N}}\right) .
$$

Case $\omega=-\mathrm{i} / 2$. By Glazman decomposition, one shows that
$-\operatorname{div}\left(\left(\omega+\mathrm{i} \chi_{K}\right) \nabla\right)$ is invertible $\Longleftrightarrow(-\mathrm{i} \omega+1) \Lambda_{L}-\mathrm{i} \omega \Lambda_{R}$ is invertible,
Fix a o.n. basis of $L^{2}\left(\left(0, L_{2}\right) \times\left(0, L_{3}\right)\right)$. Call it $\left(\psi_{n}\right)_{n}$. Set $\omega=-\mathrm{i} v$ with $v \in(0,1)$. Then

$$
(-\mathrm{i} \omega+1) \Lambda_{L}-\mathrm{i} \omega \Lambda_{R}=\operatorname{diag}\left(\left(\kappa_{n}\left((1-v) \operatorname{coth}\left(\kappa_{n}\right)-v\right)\right)_{n \in \mathbb{N}}\right) .
$$

For $v \neq 1 / 2$, this operator is a finite-rank perturbation of a boundedly invertible matrix, so -iv is not in the essential spectrum.

Case $\omega=-\mathrm{i} / 2$. By Glazman decomposition, one shows that
$-\operatorname{div}\left(\left(\omega+\mathrm{i} \chi_{K}\right) \nabla\right)$ is invertible $\Longleftrightarrow(-\mathrm{i} \omega+1) \Lambda_{L}-\mathrm{i} \omega \Lambda_{R}$ is invertible,
Fix a o.n. basis of $L^{2}\left(\left(0, L_{2}\right) \times\left(0, L_{3}\right)\right)$. Call it $\left(\psi_{n}\right)_{n}$. Set $\omega=-\mathrm{i} v$ with $v \in(0,1)$. Then

$$
(-\mathrm{i} \omega+1) \Lambda_{L}-\mathrm{i} \omega \Lambda_{R}=\operatorname{diag}\left(\left(\kappa_{n}\left((1-v) \operatorname{coth}\left(\kappa_{n}\right)-v\right)\right)_{n \in \mathbb{N}}\right) .
$$

For $v \neq 1 / 2$, this operator is a finite-rank perturbation of a boundedly invertible matrix, so $-\mathrm{i} v$ is not in the essential spectrum. For $v=1 / 2$,
$u_{n}\left(x_{1}, x_{2}, x_{3}\right):= \begin{cases}\left(1-\left(x_{1}-1\right) \kappa_{n}\left(\operatorname{coth}\left(\kappa_{n}\right)-1\right)\right) \psi_{n}\left(x_{2}, x_{3}\right) \frac{\sinh \left(\kappa_{n} x_{1}\right)}{\sinh \left(\kappa_{n}\right)}, & x_{1} \in(0,1), \\ \psi_{n}\left(x_{2}, x_{3}\right) \exp \left(-\kappa_{n}\left(x_{1}-1\right)\right), & x_{1}>1,\end{cases}$
forms a Weyl singular sequence, so $-\mathrm{i} / 2 \in \sigma_{e}(V)$.

