Essential spectrum of dissipative Maxwell systems

Francesco Ferraresso University of Sassari, Italy fferraresso@uniss.it

Mathematical aspects of the physics with non-self-adjoint operators

6.6.2024

Partially funded by EINS project 00000038/06

Literature

[Lassas '98] Lassas, Matti - The essential spectrum of the nonselfadjoint Maxwell operator in a bounded domain, J. Math. Anal. Appl. (1998)

[ABMW '19] Alberti, Giovanni S., Brown, Malcolm, Marletta, Marco, and Wood, Ian - Essential spectrum for Maxwell's equations, Ann. Henri Poincaré (2019)

[BFMT '23] Bögli, Sabine, F.F., Marletta, Marco, Tretter, Christiane - Spectral analysis and domain truncation for Maxwell's equations, J. Math. Pures Appl. (2023)

[FM '23] F.F., Marletta, Marco - Spectral properties of the inhomogeneous Drude-Lorentz model with dissipation, JDE (2023)

[FM '24] F.F., Marletta, Marco - Essential spectrum for dissipative Maxwell equations in domains with cylindrical ends, JMAA (2024)

[FM hs] F.F., Marletta, Marco - On the spectrum of a dissipative Maxwell system in the presence of Faraday layers, preprint (2024)

Macroscopic electromagnetic properties of a medium are described by Maxwell's equations

 $\partial_t D = \operatorname{curl} H - J, \quad \partial_t B = -\operatorname{curl} E, \quad \operatorname{div} D = \rho, \quad \operatorname{div} B = 0.$

Macroscopic electromagnetic properties of a medium are described by Maxwell's equations

$$\partial_t D = \operatorname{curl} H - J, \quad \partial_t B = -\operatorname{curl} E, \quad \operatorname{div} D = \rho, \quad \operatorname{div} B = 0.$$

Depending on the medium, different constitutive relations link the couple (D, B) to (E, H).

Macroscopic electromagnetic properties of a medium are described by Maxwell's equations

$$\partial_t D = \operatorname{curl} H - J, \quad \partial_t B = -\operatorname{curl} E, \quad \operatorname{div} D = \rho, \quad \operatorname{div} B = 0.$$

Depending on the medium, different constitutive relations link the couple (D, B) to (E, H).

Example: linear anisotropic medium

$$D = \epsilon E$$
, $B = \mu H$, $\rho = J = 0$.

Macroscopic electromagnetic properties of a medium are described by Maxwell's equations

$$\partial_t D = \operatorname{curl} H - J, \quad \partial_t B = -\operatorname{curl} E, \quad \operatorname{div} D = \rho, \quad \operatorname{div} B = 0.$$

Depending on the medium, different constitutive relations link the couple (D, B) to (E, H).

Example: linear anisotropic medium

$$D = \epsilon E$$
, $B = \mu H$, $\rho = J = 0$.

Here ϵ, μ are matrix-valued bounded functions representing the electric permittivity and the magnetic permeability of the medium. Assume ϵ, μ are L^{∞} , symmetric-matrix-valued functions, $\epsilon, \mu \ge c\mathbb{I}, c > 0$.

Example: linear anisotropic conductive medium

Example: linear anisotropic conductive medium

$$D = \epsilon E$$
, $B = \mu H$, $J = \sigma E$, $\rho = 0$.

Example: linear anisotropic conductive medium

$$D = \epsilon E$$
, $B = \mu H$, $J = \sigma E$, $\rho = 0$.

 σ is the conductivity, $\sigma \in L^{\infty}(\Omega; \mathbb{R}^{3\times 3}), \sigma \geq 0$.

Example: linear anisotropic conductive medium

$$D = \epsilon E$$
, $B = \mu H$, $J = \sigma E$, $\rho = 0$.

 σ is the conductivity, $\sigma \in L^{\infty}(\Omega; \mathbb{R}^{3\times 3}), \sigma \ge 0$. In time-harmonic formulation, in a (unbounded) Lipschitz set $\Omega \subset \mathbb{R}^3, F_i \in L^2(\Omega)^3$,

$$\begin{cases} -i\sigma E + i\operatorname{curl} H - \omega\epsilon E = F_1, & \text{in } \Omega, \\ -i\operatorname{curl} E - \omega\mu H = F_2, & \text{in } \Omega, \\ \nu \times E = 0, & \text{on } \partial\Omega. \end{cases}$$

Example: linear anisotropic conductive medium

$$D = \epsilon E$$
, $B = \mu H$, $J = \sigma E$, $\rho = 0$.

 σ is the conductivity, $\sigma \in L^{\infty}(\Omega; \mathbb{R}^{3\times 3}), \sigma \ge 0$. In time-harmonic formulation, in a (unbounded) Lipschitz set $\Omega \subset \mathbb{R}^3, F_i \in L^2(\Omega)^3$,

$$\begin{cases}
-i\sigma E + i\operatorname{curl} H - \omega\epsilon E = F_1, & \text{in } \Omega, \\
-i\operatorname{curl} E - \omega\mu H = F_2, & \text{in } \Omega, \\
\nu \times E = 0, & \text{on } \partial\Omega.
\end{cases}$$

 $E \in H_0(\operatorname{curl}, \Omega) := \left\{ u \in L^2(\Omega)^3 : \operatorname{curl} u \in L^2(\Omega)^3, \ (\nu \times u)|_{\partial \Omega} = 0 \right\}$

Example: linear anisotropic conductive medium

$$D = \epsilon E$$
, $B = \mu H$, $J = \sigma E$, $\rho = 0$.

 σ is the conductivity, $\sigma \in L^{\infty}(\Omega; \mathbb{R}^{3\times 3})$, $\sigma \ge 0$. In time-harmonic formulation, in a (unbounded) Lipschitz set $\Omega \subset \mathbb{R}^3$, $F_i \in L^2(\Omega)^3$,

$$\begin{aligned} -i\sigma E + i \operatorname{curl} H - \omega \epsilon E &= F_1, & \text{ in } \Omega, \\ -i \operatorname{curl} E - \omega \mu H &= F_2, & \text{ in } \Omega, \\ v \times E &= 0, & \text{ on } \partial \Omega. \end{aligned}$$

 $E \in H_0(\operatorname{curl}, \Omega) := \left\{ u \in L^2(\Omega)^3 : \operatorname{curl} u \in L^2(\Omega)^3, \ (\nu \times u)|_{\partial \Omega} = 0 \right\}$ $H \in H(\operatorname{curl}, \Omega) := \left\{ u \in L^2(\Omega)^3 : \operatorname{curl} u \in L^2(\Omega)^3 \right\}$

Example: linear anisotropic conductive medium

$$D = \epsilon E$$
, $B = \mu H$, $J = \sigma E$, $\rho = 0$.

 σ is the conductivity, $\sigma \in L^{\infty}(\Omega; \mathbb{R}^{3\times 3})$, $\sigma \ge 0$. In time-harmonic formulation, in a (unbounded) Lipschitz set $\Omega \subset \mathbb{R}^3$, $F_i \in L^2(\Omega)^3$,

$$\begin{aligned} -i\sigma E + i \operatorname{curl} H - \omega \epsilon E &= F_1, & \text{ in } \Omega, \\ -i \operatorname{curl} E - \omega \mu H &= F_2, & \text{ in } \Omega, \\ \nu \times E &= 0, & \text{ on } \partial \Omega. \end{aligned}$$

 $E \in H_0(\operatorname{curl}, \Omega) := \left\{ u \in L^2(\Omega)^3 : \operatorname{curl} u \in L^2(\Omega)^3, \ (\nu \times u)|_{\partial\Omega} = 0 \right\}$ $H \in H(\operatorname{curl}, \Omega) := \left\{ u \in L^2(\Omega)^3 : \operatorname{curl} u \in L^2(\Omega)^3 \right\}$ To keep in mind.

To keep in mind:

Example: linear anisotropic conductive medium

$$D = \epsilon E$$
, $B = \mu H$, $J = \sigma E$, $\rho = 0$.

 σ is the conductivity, $\sigma \in L^{\infty}(\Omega; \mathbb{R}^{3\times 3})$, $\sigma \ge 0$. In time-harmonic formulation, in a (unbounded) Lipschitz set $\Omega \subset \mathbb{R}^3$, $F_i \in L^2(\Omega)^3$,

$$\begin{aligned} -i\sigma E + i \operatorname{curl} H - \omega \epsilon E &= F_1, & \text{ in } \Omega, \\ -i \operatorname{curl} E - \omega \mu H &= F_2, & \text{ in } \Omega, \\ v \times E &= 0, & \text{ on } \partial \Omega. \end{aligned}$$

 $E \in H_0(\operatorname{curl}, \Omega) := \left\{ u \in L^2(\Omega)^3 : \operatorname{curl} u \in L^2(\Omega)^3, \ (\nu \times u)|_{\partial \Omega} = 0 \right\}$ $H \in H(\operatorname{curl}, \Omega) := \left\{ u \in L^2(\Omega)^3 : \operatorname{curl} u \in L^2(\Omega)^3 \right\}$

To keep in mind:

(I) Helmholtz decomposition $L^{2}(\Omega, \mathbb{C}^{3}) = \nabla \dot{H}_{0}^{1}(\Omega) \oplus H(\operatorname{div} 0, \Omega);$

Example: linear anisotropic conductive medium

$$D = \epsilon E$$
, $B = \mu H$, $J = \sigma E$, $\rho = 0$.

 σ is the conductivity, $\sigma \in L^{\infty}(\Omega; \mathbb{R}^{3\times 3})$, $\sigma \ge 0$. In time-harmonic formulation, in a (unbounded) Lipschitz set $\Omega \subset \mathbb{R}^3$, $F_i \in L^2(\Omega)^3$,

$$\begin{aligned} -i\sigma E + i \operatorname{curl} H - \omega \epsilon E &= F_1, & \text{in } \Omega, \\ -i \operatorname{curl} E - \omega \mu H &= F_2, & \text{in } \Omega, \\ \nu \times E &= 0, & \text{on } \partial \Omega. \end{aligned}$$

 $E \in H_0(\operatorname{curl}, \Omega) := \left\{ u \in L^2(\Omega)^3 : \operatorname{curl} u \in L^2(\Omega)^3, \ (\nu \times u)|_{\partial \Omega} = 0 \right\}$ $H \in H(\operatorname{curl}, \Omega) := \left\{ u \in L^2(\Omega)^3 : \operatorname{curl} u \in L^2(\Omega)^3 \right\}$

To keep in mind:

(I) Helmholtz decomposition L²(Ω, C³) = ∇H₀¹(Ω) ⊕ H(div 0, Ω);
(II) Weber's compactness result If Ω is bounded and Lipschitz, H₀(curl, Ω) ∩ H(div, Ω) is compactly embedded in L²(Ω)³.

F. Ferraresso (Sassari)

$$V(\omega) = \begin{pmatrix} -i\sigma & i \operatorname{curl} \\ -i \operatorname{curl}_0 & 0 \end{pmatrix} - \omega \begin{pmatrix} \epsilon & 0 \\ 0 & \mu \end{pmatrix}, \quad \omega \in \mathbb{C},$$

 $\operatorname{dom}(V(\omega)) = \operatorname{dom}(V) = H_0(\operatorname{curl}, \Omega) \oplus H(\operatorname{curl}, \Omega).$

$$V(\omega) = \begin{pmatrix} -i\sigma & i \operatorname{curl} \\ -i \operatorname{curl}_0 & 0 \end{pmatrix} - \omega \begin{pmatrix} \epsilon & 0 \\ 0 & \mu \end{pmatrix}, \quad \omega \in \mathbb{C},$$

 $\operatorname{dom}(V(\omega)) = \operatorname{dom}(V) = H_0(\operatorname{curl}, \Omega) \oplus H(\operatorname{curl}, \Omega).$

 $\operatorname{curl}_0 = (\operatorname{curl})^*$ is the operator acting as curl on $\operatorname{dom}(\operatorname{curl}_0) = H_0(\operatorname{curl})$.

$$V(\omega) = \begin{pmatrix} -i\sigma & i \operatorname{curl} \\ -i \operatorname{curl}_0 & 0 \end{pmatrix} - \omega \begin{pmatrix} \epsilon & 0 \\ 0 & \mu \end{pmatrix}, \quad \omega \in \mathbb{C},$$

 $\operatorname{dom}(V(\omega)) = \operatorname{dom}(V) = H_0(\operatorname{curl}, \Omega) \oplus H(\operatorname{curl}, \Omega).$

 $\operatorname{curl}_0 = (\operatorname{curl})^*$ is the operator acting as curl on $\operatorname{dom}(\operatorname{curl}_0) = H_0(\operatorname{curl})$.

Assumption. $\epsilon, \mu, \sigma \in L^{\infty}(\Omega, \operatorname{Sym}_{3}(\mathbb{R}))$, satisfying

$$\begin{array}{ll} 0 < \epsilon_{\min} \leq \eta \cdot \epsilon \eta \leq \epsilon_{\max}, \\ 0 < \mu_{\min} \leq \eta \cdot \mu \eta \leq \mu_{\max}, \\ 0 \leq \sigma_{\min} \leq \eta \cdot \sigma \eta \leq \sigma_{\max}, \end{array} \quad \eta \in \mathbb{R}^3, \ |\eta| = 1. \end{array}$$

$$\begin{cases} -i\sigma E + i\operatorname{curl} H = \omega \epsilon E, & \text{in } \Omega, \\ -i\operatorname{curl} E = \omega \mu H, & \text{in } \Omega. \end{cases}$$

$$\begin{cases} -i\sigma E + i\operatorname{curl} H = \omega \epsilon E, & \text{in } \Omega, \\ -i\operatorname{curl} E = \omega \mu H, & \text{in } \Omega. \end{cases}$$

$$\operatorname{curl}(\mu^{-1}\operatorname{curl} E) = \operatorname{curl}(\mathrm{i}\omega H) = \omega(\omega\epsilon + \mathrm{i}\sigma)E$$

$$\begin{cases} -i\sigma E + i\operatorname{curl} H = \omega \epsilon E, & \text{in } \Omega, \\ -i\operatorname{curl} E = \omega \mu H, & \text{in } \Omega. \end{cases}$$

$$\operatorname{curl}(\mu^{-1}\operatorname{curl} E) = \operatorname{curl}(\mathrm{i}\omega H) = \omega(\omega\epsilon + \mathrm{i}\sigma)E$$

 $0 = \operatorname{div}\operatorname{curl}(\mu^{-1}\operatorname{curl} E) = \omega(\omega\epsilon + \mathrm{i}\sigma) \operatorname{div} E$

Constant coefficients, $\sigma \neq 0$ (non-selfadjoint)

$$\begin{cases} -i\sigma E + i\operatorname{curl} H = \omega \epsilon E, & \text{in } \Omega, \\ -i\operatorname{curl} E = \omega \mu H, & \text{in } \Omega. \end{cases}$$

$$\operatorname{curl}(\mu^{-1}\operatorname{curl} E) = \operatorname{curl}(\mathrm{i}\omega H) = \omega(\omega\epsilon + \mathrm{i}\sigma)E$$
$$0 = \operatorname{div}\operatorname{curl}(\mu^{-1}\operatorname{curl} E) = \omega(\omega\epsilon + \mathrm{i}\sigma) \operatorname{div} E$$

 $\omega = 0$ and $\omega = -i\sigma/\epsilon$ "special points" (essential spectrum).

Essential spectrum of a linear operator A in the Hilbert space \mathcal{H} :

$$\sigma_{e}(A) := \left\{ \omega \in \mathbb{C} : \exists u_{n} \in \operatorname{dom}(A), \|u_{n}\| = 1, u_{n} \rightarrow 0, \left\| (A - \omega)u_{n} \right\| \rightarrow 0 \right\}.$$

Essential spectrum of a linear operator A in the Hilbert space \mathcal{H} :

$$\sigma_{e}(A) := \left\{ \omega \in \mathbb{C} : \exists u_{n} \in \operatorname{dom}(A), \|u_{n}\| = 1, u_{n} \rightharpoonup 0, \left\| (A - \omega)u_{n} \right\| \rightarrow 0 \right\}.$$

Let now $\omega \mapsto A(\omega)$ be an holomorphic family of operators.

Essential spectrum of a linear operator A in the Hilbert space \mathcal{H} :

$$\sigma_{e}(A) := \{ \omega \in \mathbb{C} : \exists u_{n} \in \operatorname{dom}(A), \|u_{n}\| = 1, u_{n} \rightharpoonup 0, \|(A - \omega)u_{n}\| \rightarrow 0 \}.$$

Let now $\omega \mapsto A(\omega)$ be an holomorphic family of operators. We can define in a similar way

$$\sigma_{e}(\mathsf{A}) = \left\{ \omega \in \mathbb{C} : \mathsf{0} \in \sigma_{e}(\mathsf{A}(\omega)) \right\}$$

Decomposition of the essential spectrum

Decomposition of the essential spectrum

Assume Ω unbounded, ϵ, μ, σ in $L^{\infty}(\Omega, \operatorname{Sym}_{3}(\mathbb{R}))$,

Decomposition of the essential spectrum

Assume Ω unbounded, ϵ, μ, σ in $L^{\infty}(\Omega, \operatorname{Sym}_{3}(\mathbb{R}))$, and exist $\epsilon_{\infty} \in \mathbb{R}_{>0}, \mu_{\infty} \in \mathbb{R}_{>0}$ s.t. $\lim_{t \to \infty} \int \sup_{x \to 0} \sup_{$

$$\lim_{R\to\infty}\left\{\sup_{\|x\|>R}\max\left(\|\epsilon(x)-\epsilon_{\infty} \text{ id }\|,\|\mu(x)-\mu_{\infty} \text{ id }\|,\|\sigma(x)\|\right)\right\}=0.$$

Main results

Decomposition of the essential spectrum

Assume Ω unbounded, ϵ , μ , σ in $L^{\infty}(\Omega, \operatorname{Sym}_{3}(\mathbb{R}))$, and exist $\epsilon_{\infty} \in \mathbb{R}_{>0}, \mu_{\infty} \in \mathbb{R}_{>0}$ s.t.

$$\lim_{R \to \infty} \left\{ \sup_{\|x\| > R} \max \left(\|\epsilon(x) - \epsilon_{\infty} \operatorname{id}\|, \|\mu(x) - \mu_{\infty} \operatorname{id}\|, \|\sigma(x)\| \right) \right\} = 0.$$

Define $\mathcal{L}(\omega) = \operatorname{curl} \mu^{-1} \operatorname{curl}_0 - \omega(\omega \epsilon + \mathrm{i}\sigma)$ and

 $L_{\infty}(\omega) := \mu_{\infty}^{-1} \operatorname{curl} \operatorname{curl}_{0} - \omega^{2} \epsilon_{\infty}, \quad \operatorname{dom}(L_{\infty}) \subset H_{0}(\operatorname{curl}, \Omega) \cap H(\operatorname{div} 0, \Omega).$

Main results

Decomposition of the essential spectrum

Assume Ω unbounded, ϵ , μ , σ in $L^{\infty}(\Omega, \operatorname{Sym}_{3}(\mathbb{R}))$, and exist $\epsilon_{\infty} \in \mathbb{R}_{>0}, \mu_{\infty} \in \mathbb{R}_{>0}$ s.t.

$$\lim_{R\to\infty}\left\{\sup_{\|x\|>R}\max\left(\|\epsilon(x)-\epsilon_{\infty} \operatorname{id}\|,\|\mu(x)-\mu_{\infty} \operatorname{id}\|,\|\sigma(x)\|\right)\right\}=0.$$

Define $\mathcal{L}(\omega) = \operatorname{curl} \mu^{-1} \operatorname{curl}_0 - \omega(\omega \epsilon + \mathrm{i}\sigma)$ and

 $L_{\infty}(\omega) := \mu_{\infty}^{-1} \operatorname{curl} \operatorname{curl}_{0} - \omega^{2} \epsilon_{\infty}, \quad \operatorname{dom}(L_{\infty}) \subset H_{0}(\operatorname{curl}, \Omega) \cap H(\operatorname{div} 0, \Omega).$

 $\mathcal{W}_{\nabla}(\omega) := \mathcal{P}_{\nabla}\mathcal{L}(\omega)\mathcal{P}_{\nabla} = -\omega\mathcal{P}_{\nabla}(\omega\epsilon + \mathrm{i}\sigma)\mathcal{P}_{\nabla}, \quad \mathrm{dom}(\mathcal{W}_{\nabla}) = \nabla\dot{H}_{0}^{1}(\Omega).$

Main results

Decomposition of the essential spectrum

Assume Ω unbounded, ϵ, μ, σ in $L^{\infty}(\Omega, \operatorname{Sym}_{3}(\mathbb{R}))$, and exist $\epsilon_{\infty} \in \mathbb{R}_{>0}, \mu_{\infty} \in \mathbb{R}_{>0}$ s.t.

$$\lim_{R\to\infty}\left\{\sup_{\|x\|>R}\max\left(\|\epsilon(x)-\epsilon_{\infty} \text{ id }\|,\|\mu(x)-\mu_{\infty} \text{ id }\|,\|\sigma(x)\|\right)\right\}=0.$$

Define $\mathcal{L}(\omega) = \operatorname{curl} \mu^{-1} \operatorname{curl}_0 - \omega(\omega \epsilon + \mathrm{i}\sigma)$ and

$$L_{\infty}(\omega) := \mu_{\infty}^{-1} \operatorname{curl} \operatorname{curl}_{0} - \omega^{2} \epsilon_{\infty}, \quad \operatorname{dom}(L_{\infty}) \subset H_{0}(\operatorname{curl}, \Omega) \cap H(\operatorname{div} 0, \Omega).$$

 $\mathcal{W}_{\nabla}(\omega) := \mathcal{P}_{\nabla}\mathcal{L}(\omega)\mathcal{P}_{\nabla} = -\omega\mathcal{P}_{\nabla}(\omega\epsilon + \mathrm{i}\sigma)\mathcal{P}_{\nabla}, \quad \mathrm{dom}(\mathcal{W}_{\nabla}) = \nabla\dot{H}_{0}^{1}(\Omega).$

Then: [Lassas '98], [ABMW '19], [BFMT '23]

$$\sigma_{e}(V) = \sigma_{e}(\mathcal{L}) = \sigma_{e}(\mathcal{L}_{\infty}) \cup \sigma_{e}(\mathcal{W}_{\nabla}) \subset \mathbb{R} \cup i\mathbb{R}_{\leq 0}$$

Non-constant coefficients at infinity

Non-constant coefficients at infinity

Setting in [FM'24]: domain with multiple cylindrical ends C_i , ϵ , μ asymptotically constant in each cylinder.

Non-constant coefficients at infinity

Setting in [FM'24]: domain with multiple cylindrical ends C_i , ϵ , μ asymptotically constant in each cylinder.

Main result:
Non-constant coefficients at infinity

Setting in [FM'24]: domain with multiple cylindrical ends C_i , ϵ , μ asymptotically constant in each cylinder.

<u>Main result</u>: the decomposition $\sigma_e(V) = \sigma_e(\mathcal{L}_{\infty}) \cup \sigma_e(\mathcal{W}_{\nabla})$ still holds, with

$$\mathcal{L}_{\infty}(\omega) = \operatorname{curl} \mu_{\infty}^{-1} \operatorname{curl} - \omega^2 P_{\operatorname{ker}(\operatorname{div})} \epsilon_{\infty}$$

 $\epsilon_{\infty} \in C^{\infty}(\Omega), \quad \epsilon_{\infty} = c_i = const$ in each cylinder

Non-constant coefficients at infinity

Setting in [FM'24]: domain with multiple cylindrical ends C_i , ϵ , μ asymptotically constant in each cylinder.

<u>Main result</u>: the decomposition $\sigma_e(V) = \sigma_e(\mathcal{L}_{\infty}) \cup \sigma_e(\mathcal{W}_{\nabla})$ still holds, with

$$\mathcal{L}_{\infty}(\omega) = \operatorname{\mathsf{curl}} \mu_{\infty}^{-1} \operatorname{\mathsf{curl}} - \omega^2 \mathcal{P}_{\operatorname{ker}(\operatorname{\mathsf{div}})} \epsilon_{\infty}$$

 $\epsilon_{\infty} \in C^{\infty}(\Omega), \quad \epsilon_{\infty} = c_i = const$ in each cylinder

Glazman decomposition $\Rightarrow \sigma_e(\mathcal{L}_{\infty}) = \bigcup_i \sigma_e(\mathcal{L}_{\infty,i}).$

Non-constant coefficients at infinity

Setting in [FM'24]: domain with multiple cylindrical ends C_i , ϵ , μ asymptotically constant in each cylinder.

<u>Main result</u>: the decomposition $\sigma_e(V) = \sigma_e(\mathcal{L}_{\infty}) \cup \sigma_e(\mathcal{W}_{\nabla})$ still holds, with

$$\mathcal{L}_{\infty}(\omega) = \operatorname{\mathsf{curl}} \mu_{\infty}^{-1} \operatorname{\mathsf{curl}} - \omega^2 \mathcal{P}_{\operatorname{ker}(\operatorname{\mathsf{div}})} \epsilon_{\infty}$$

 $\epsilon_{\infty} \in C^{\infty}(\Omega), \quad \epsilon_{\infty} = c_i = const$ in each cylinder

Glazman decomposition $\Rightarrow \sigma_e(\mathcal{L}_{\infty}) = \bigcup_i \sigma_e(\mathcal{L}_{\infty,i}).$

(!) Immediate Glazman decomposition on V fails.

F. Ferraresso (Sassari)

Rational dependence on the frequency

• Systems in the form

$$V(\omega) = \begin{pmatrix} -i\sigma & i \operatorname{curl} \\ -i \operatorname{curl}_0 & 0 \end{pmatrix} - \omega \mathbb{I} + \begin{pmatrix} \frac{\theta_e^2}{(\omega + i\gamma_e)} & 0 \\ 0 & \frac{\theta_m^2}{(\omega + i\gamma_m)} \end{pmatrix}, \quad \omega \in \mathbb{C} \setminus \{-i\gamma_e, -i\gamma_m\},$$

A Drude-Lorentz model for EM waves in metamaterials [FM'23]

Rational dependence on the frequency

• Systems in the form

$$V(\omega) = \begin{pmatrix} -i\sigma & i \operatorname{curl} \\ -i \operatorname{curl}_0 & 0 \end{pmatrix} - \omega \mathbb{I} + \begin{pmatrix} \frac{\theta_e^2}{(\omega + i\gamma_e)} & 0 \\ 0 & \frac{\theta_m^2}{(\omega + i\gamma_m)} \end{pmatrix}, \quad \omega \in \mathbb{C} \setminus \{-i\gamma_e, -i\gamma_m\},$$

→> Drude-Lorentz model for EM waves in metamaterials [FM'23]

Essential spectrum of dissipative Maxwell systems

Consider an horizontal layer of periodically distributed spheres kept at 0 potential.

Consider an horizontal layer of periodically distributed spheres kept at 0 potential. The spheres have radius of order ϵ^2 and the distance among them is of order ϵ .

Consider an horizontal layer of periodically distributed spheres kept at 0 potential. The spheres have radius of order ϵ^2 and the distance among them is of order ϵ .

Consider the Maxwell system curl μ^{-1} curl $E - \omega(\omega \epsilon + i\sigma)E = F$ in $\Omega \setminus B_{\epsilon}$, and pass to the limit as $\epsilon \to 0^+$.

Consider an horizontal layer of periodically distributed spheres kept at 0 potential. The spheres have radius of order ϵ^2 and the distance among them is of order ϵ .

Consider the Maxwell system curl μ^{-1} curl $E - \omega(\omega \epsilon + i\sigma)E = F$ in $\Omega \setminus B_{\epsilon}$, and pass to the limit as $\epsilon \to 0^+$.

$$\begin{cases} \operatorname{curl} \mu^{-1} \operatorname{curl} E - \omega(\omega\epsilon + i\sigma)E = F, & \text{in } \Omega \setminus \Sigma, \\ v \times E \times v = 0, & \text{on } \partial\Omega, \\ [v \times E \times v]_{\Sigma} = 0, & \text{on } \Sigma, \\ [v \times \mu^{-1} \operatorname{curl} E]_{\Sigma} = \alpha^2 \Theta(v \times E \times v)|_{\Sigma}, & \text{on } \Sigma, \end{cases}$$

where $[\nu \times \Psi]_{\Sigma} = \nu^+ \times \Psi^+ + \nu^- \times \Psi^-$ is the Sobolev jump of the tangential traces across Σ , and $\Theta := J^* \Theta_0 J$, Θ_0 is a bounded positive operator in $L^2_t(\Sigma)$, J isomorphism between $H^{-1/2}(\operatorname{curl}_{\Sigma}, \Sigma)$ and $L^2_t(\Sigma)$.

$$\begin{cases} \operatorname{curl} \mu^{-1} \operatorname{curl} E - \omega(\omega\epsilon + i\sigma)E = F, & \text{in } \Omega \setminus \Sigma, \\ v \times E \times v = 0, & \text{on } \partial\Omega, \\ [v \times E \times v]_{\Sigma} = 0, & \text{on } \Sigma, \\ [v \times \mu^{-1} \operatorname{curl} E]_{\Sigma} = \alpha^2 \Theta(v \times E \times v)|_{\Sigma}, & \text{on } \Sigma, \end{cases}$$

where $[\nu \times \Psi]_{\Sigma} = \nu^+ \times \Psi^+ + \nu^- \times \Psi^-$ is the Sobolev jump of the tangential traces across Σ , and $\Theta := J^* \Theta_0 J$, Θ_0 is a bounded positive operator in $L_t^2(\Sigma)$, J isomorphism between $H^{-1/2}(\operatorname{curl}_{\Sigma}, \Sigma)$ and $L_t^2(\Sigma)$. We denote by $V_{\Omega}(\omega)$ the operator associated with the previous BVP. Here Ω can be unbounded; if so, assume ϵ, μ, σ asymp. constant.

$$\begin{cases} \operatorname{curl} \mu^{-1} \operatorname{curl} E - \omega(\omega\epsilon + i\sigma)E = F, & \text{in } \Omega \setminus \Sigma, \\ v \times E \times v = 0, & \text{on } \partial\Omega, \\ [v \times E \times v]_{\Sigma} = 0, & \text{on } \Sigma, \\ [v \times \mu^{-1} \operatorname{curl} E]_{\Sigma} = \alpha^2 \Theta(v \times E \times v)|_{\Sigma}, & \text{on } \Sigma, \end{cases}$$

where $[v \times \Psi]_{\Sigma} = v^+ \times \Psi^+ + v^- \times \Psi^-$ is the Sobolev jump of the tangential traces across Σ , and $\Theta := J^* \Theta_0 J$, Θ_0 is a bounded positive operator in $L_t^2(\Sigma)$, *J* isomorphism between $H^{-1/2}(\operatorname{curl}_{\Sigma}, \Sigma)$ and $L_t^2(\Sigma)$. We denote by $V_{\Omega}(\omega)$ the operator associated with the previous BVP. Here Ω can be unbounded; if so, assume $c_{-} w_{-} \sigma$ asymp. constant

Here Ω can be unbounded; if so, assume ϵ, μ, σ asymp. constant.

For which frequencies $\omega \in \mathbb{C}$ can we solve this transmission problem?

Basic intuition:

Basic intuition:

If " $\alpha = +\infty$ ", we recover the problem $V_0(\omega)E = F$,

Basic intuition:

If " $\alpha = +\infty$ ", we recover the problem $V_0(\omega)E = F$, where

$$\begin{cases} \operatorname{curl} \mu^{-1} \operatorname{curl} E - \omega(\omega \epsilon + \mathrm{i}\sigma) E = F, & \text{in } \Omega \setminus \Sigma, \\ \nu \times E \times \nu = 0, & \text{on } \partial \Omega \cup \Sigma. \end{cases}$$

Basic intuition:

If " $\alpha = +\infty$ ", we recover the problem $V_0(\omega)E = F$, where

$$\begin{cases} \operatorname{curl} \mu^{-1} \operatorname{curl} E - \omega(\omega \epsilon + \mathrm{i}\sigma) E = F, & \text{in } \Omega \setminus \Sigma, \\ \nu \times E \times \nu = 0, & \text{on } \partial \Omega \cup \Sigma. \end{cases}$$

This corresponds to a perfectly shielding Faraday layer Σ .

Basic intuition:

If " $\alpha = +\infty$ ", we recover the problem $V_0(\omega)E = F$, where

$$\begin{cases} \operatorname{curl} \mu^{-1} \operatorname{curl} E - \omega(\omega \epsilon + i\sigma) E = F, & \text{ in } \Omega \setminus \Sigma, \\ \nu \times E \times \nu = 0, & \text{ on } \partial \Omega \cup \Sigma. \end{cases}$$

This corresponds to a perfectly shielding Faraday layer Σ .

Rough statement: with $C(\omega, \alpha) = [\nu \times \text{curl } P(\omega)]_{\Sigma} - \alpha^2 \Theta$,

Basic intuition:

If " $\alpha = +\infty$ ", we recover the problem $V_0(\omega)E = F$, where

$$\begin{cases} \operatorname{curl} \mu^{-1} \operatorname{curl} E - \omega(\omega \epsilon + i\sigma) E = F, & \text{in } \Omega \setminus \Sigma, \\ \nu \times E \times \nu = 0, & \text{on } \partial \Omega \cup \Sigma. \end{cases}$$

This corresponds to a perfectly shielding Faraday layer Σ .

Rough statement: with $C(\omega, \alpha) = [v \times \text{curl } P(\omega)]_{\Sigma} - \alpha^2 \Theta$,

$$\sigma_e(V_{\Omega}) = \sigma_e(V_0) \cup \sigma_e(C(\cdot, \alpha))$$

Notation: we will write $\pi_{\Sigma}(E) := v \times E \times v|_{\Sigma}$.

Notation: we will write $\pi_{\Sigma}(E) := v \times E \times v|_{\Sigma}$. Define:

$$C(\omega, \alpha)h = [\nu \times \mu^{-1} \operatorname{curl} P(\omega)h]_{\Sigma} - \alpha^2 \Theta h, \qquad h \in \pi_{\Sigma}(H_0(\operatorname{curl}, \Omega))$$

Notation: we will write $\pi_{\Sigma}(E) := v \times E \times v|_{\Sigma}$. Define:

$$C(\omega, \alpha)h = [\nu \times \mu^{-1} \operatorname{curl} P(\omega)h]_{\Sigma} - \alpha^2 \Theta h, \qquad h \in \pi_{\Sigma}(H_0(\operatorname{curl}, \Omega))$$

where $H := P(\omega)h$ is the extension of h to Ω , solving

$$\begin{cases} \operatorname{curl} \mu^{-1} \operatorname{curl} H - \omega(\omega \epsilon + \mathrm{i}\sigma) H = 0, & \text{ in } \Omega \setminus \Sigma \\ \pi_{\Sigma}(H) = h, & \text{ on } \Sigma, \\ \pi_{\Sigma}(H) = 0. & \text{ on } \partial\Omega. \end{cases}$$

Notation: we will write $\pi_{\Sigma}(E) := v \times E \times v|_{\Sigma}$. Define:

$$C(\omega, \alpha)h = [\nu \times \mu^{-1} \operatorname{curl} P(\omega)h]_{\Sigma} - \alpha^2 \Theta h, \qquad h \in \pi_{\Sigma}(H_0(\operatorname{curl}, \Omega))$$

where $H := P(\omega)h$ is the extension of *h* to Ω , solving

$$\begin{cases} \operatorname{curl} \mu^{-1} \operatorname{curl} H - \omega(\omega \epsilon + \mathrm{i}\sigma) H = 0, & \text{ in } \Omega \setminus \Sigma \\ \pi_{\Sigma}(H) = h, & \text{ on } \Sigma, \\ \pi_{\Sigma}(H) = 0. & \text{ on } \partial\Omega. \end{cases}$$

Let also

$$V_0(\omega)E := \operatorname{curl} \mu^{-1}\operatorname{curl} E - \omega(\omega\epsilon + \mathrm{i}\sigma)E, \qquad \pi_\Sigma(E) = 0.$$

Notation: we will write $\pi_{\Sigma}(E) := v \times E \times v|_{\Sigma}$. Define:

$$C(\omega, \alpha)h = [\nu \times \mu^{-1} \operatorname{curl} P(\omega)h]_{\Sigma} - \alpha^2 \Theta h, \qquad h \in \pi_{\Sigma}(H_0(\operatorname{curl}, \Omega))$$

where $H := P(\omega)h$ is the extension of *h* to Ω , solving

$$\begin{cases} \operatorname{curl} \mu^{-1} \operatorname{curl} H - \omega(\omega \epsilon + \mathrm{i}\sigma) H = 0, & \text{ in } \Omega \setminus \Sigma \\ \pi_{\Sigma}(H) = h, & \text{ on } \Sigma, \\ \pi_{\Sigma}(H) = 0. & \text{ on } \partial\Omega. \end{cases}$$

Let also

$$\mathsf{V}_{\mathsf{0}}(\omega)\mathsf{E}:=\operatorname{curl}\mu^{-1}\operatorname{curl}\mathsf{E}-\omega(\omega\epsilon+\mathrm{i}\sigma)\mathsf{E},\qquad\pi_{\Sigma}(\mathsf{E})=\mathsf{0}.$$

Then

$$\sigma_{e}(V_{\Omega}) \supset \sigma_{e}(V_{0}) \cup (\sigma_{e}(C(\cdot, \alpha)) \cap \rho(V_{0})).$$

$$\sigma_{e}(V_{\Omega}) \subset \sigma_{e}(V_{0}) \cup (\sigma_{e}(C(\cdot, \alpha)) \cap \rho(V_{0})) \cup \sigma_{d}(V_{0})$$

If the open problem holds, i.e., no disks of eigenvalues of V_{Ω} , then

$$\sigma_{e}(V_{\Omega}) = \sigma_{e}(V_{0}) \cup \tilde{\sigma}_{e}(C(\cdot, \alpha))$$

 $\tilde{\sigma}_e(C(\cdot, \alpha))$ is the *extended* essential spectrum of the operator family C.

 $(\sigma_e(\mathcal{C}(\cdot, \alpha)) \cap \rho(V_0))$ is not empty even when Σ is a smooth surface!

 $(\sigma_e(\mathcal{C}(\cdot, \alpha)) \cap \rho(V_0))$ is not empty even when Σ is a smooth surface!

Related to [Cacciapuoti, Pankrashkin, Posilicano 2019]

 $(\sigma_e(\mathcal{C}(\cdot, \alpha)) \cap \rho(\mathcal{V}_0))$ is not empty even when Σ is a smooth surface!

Related to [Cacciapuoti, Pankrashkin, Posilicano 2019]

$$A_{\mu} = -\operatorname{div}(h_{\mu}
abla), \quad \operatorname{in} \Omega, \qquad h_{\mu}(x) = egin{cases} 1, & \operatorname{in} \Omega_{+}, \ -\mu, & \operatorname{in} \Omega_{-}. \end{cases}$$

Faraday layers

 $(\sigma_e(\mathcal{C}(\cdot, \alpha)) \cap \rho(V_0))$ is not empty even when Σ is a smooth surface!

Related to [Cacciapuoti, Pankrashkin, Posilicano 2019]

$$A_{\mu} = -\operatorname{div}(h_{\mu}
abla), \quad \operatorname{in} \Omega, \qquad h_{\mu}(x) = \begin{cases} 1, & \operatorname{in} \Omega_{+}, \\ -\mu, & \operatorname{in} \Omega_{-}. \end{cases}$$

1

In bounded domains $\Omega \subset \mathbb{R}^N$,

$$\sigma_{\theta}(A_{\mu}) = \begin{cases} \emptyset, & \text{if } \mu \neq 1, \\ \{0\}, & \text{if } \mu = 1, N = 2, \\ \supset \{0\}, & \text{if } \mu = 1, N \ge 3, + \text{geom. assumption} \end{cases}$$

 $(\sigma_e(\mathcal{C}(\cdot, \alpha)) \cap \rho(V_0))$ is not empty even when Σ is a smooth surface!

Related to [Cacciapuoti, Pankrashkin, Posilicano 2019]

$$A_{\mu} = -\operatorname{div}(h_{\mu}
abla), \quad \operatorname{in} \Omega, \qquad h_{\mu}(x) = \begin{cases} 1, & \operatorname{in} \Omega_{+}, \\ -\mu, & \operatorname{in} \Omega_{-}. \end{cases}$$

1

In bounded domains $\Omega \subset \mathbb{R}^N$,

$$\sigma_{e}(A_{\mu}) = \begin{cases} \emptyset, & \text{if } \mu \neq 1, \\ \{0\}, & \text{if } \mu = 1, N = 2, \\ \supset \{0\}, & \text{if } \mu = 1, N \ge 3, + \text{geom. assumption} \end{cases}$$

In this setting the analogue of C is

$$\Psi_1=\frac{1}{2}(DtN^--\mu DtN^+)$$

This is always a Ψ DO of order 1, when $\mu \neq 1$.

 $(\sigma_e(\mathcal{C}(\cdot, \alpha)) \cap \rho(V_0))$ is not empty even when Σ is a smooth surface!

Related to [Cacciapuoti, Pankrashkin, Posilicano 2019]

$$A_{\mu} = -\operatorname{div}(h_{\mu}
abla), \quad \operatorname{in} \Omega, \qquad h_{\mu}(x) = egin{cases} 1, & \operatorname{in} \Omega_{+}, \ -\mu, & \operatorname{in} \Omega_{-}. \end{cases}$$

In bounded domains $\Omega \subset \mathbb{R}^N$,

$$\sigma_e(A_{\mu}) = \begin{cases} \emptyset, & \text{if } \mu \neq 1, \\ \{0\}, & \text{if } \mu = 1, N = 2, \\ \supset \{0\}, & \text{if } \mu = 1, N \ge 3, + \text{geom. assumption} \end{cases}$$

In this setting the analogue of C is

$$\Psi_1=\frac{1}{2}(DtN^--\mu DtN^+)$$

This is always a Ψ DO of order 1, when $\mu \neq 1$. When $\mu = 1$, $N \ge 3$,

$$(DtN^{-} - DtN^{+}) = \sqrt{-\Delta_{\Sigma}} + B^{-} + C^{-} - \sqrt{-\Delta_{\Sigma}} - B^{+} - C^{+} = B^{-} - B^{+} + (C^{-} - C^{+})$$

where B^{\pm} are Ψ DOs of order 0 and C^{\pm} are smoothing.

For Maxwell: DtN^{\pm} are NOT Ψ DOs of order 1.

Faraday layers

For Maxwell: DtN^{\pm} are NOT Ψ DOs of order 1. $DtN^{\pm}(\omega) = v^{\pm} \times \mu^{-1} \operatorname{curl} P^{\pm}(\omega)$ is believed to act on $H^{-1/2}(\operatorname{curl}_{\Sigma}, \Sigma) \oplus H^{-1/2}(\operatorname{div}_{\Sigma}, \Sigma)$ as

$$\begin{pmatrix} A^{\pm} & 0 \\ 0 & K^{\pm} \end{pmatrix}$$

where A^{\pm} is a Ψ DO of order 1, while K^{\pm} is a Ψ DO of order -1.

Faraday layers

For Maxwell: DtN^{\pm} are NOT Ψ DOs of order 1. $DtN^{\pm}(\omega) = v^{\pm} \times \mu^{-1} \operatorname{curl} P^{\pm}(\omega)$ is believed to act on $H^{-1/2}(\operatorname{curl}_{\Sigma}, \Sigma) \oplus H^{-1/2}(\operatorname{div}_{\Sigma}, \Sigma)$ as

$$\begin{pmatrix} A^{\pm} & 0 \\ 0 & K^{\pm} \end{pmatrix}$$

where A^{\pm} is a Ψ DO of order 1, while K^{\pm} is a Ψ DO of order -1.

Spectral enclosure

Let
$$\lambda_{\min}^{\Omega} := \min \sigma(\operatorname{curl} \operatorname{curl}_{0}|_{H(\operatorname{div} 0,\Omega)}) \geq 0$$
Let
$$\lambda_{\min}^{\Omega} := \min \sigma(\operatorname{curl} \operatorname{curl}_{0}|_{H(\operatorname{div} 0,\Omega)}) \ge 0$$

Theorem

The following spectral enclosure holds

$$\begin{aligned} \sigma(V) &\subset i \left[-\frac{\sigma_{\max}}{\epsilon_{\min}}, 0 \right] \cup \left\{ \omega \in \mathbb{C} \setminus i\mathbb{R} : \operatorname{Im} \omega \in \left[-\frac{1}{2} \frac{\sigma_{\max}}{\epsilon_{\min}}, -\frac{1}{2} \frac{\sigma_{\min}}{\epsilon_{\max}} \right], \\ (\operatorname{Re} \omega)^2 - 3(\operatorname{Im} \omega)^2 + 2 \frac{\sigma_{\max}}{\epsilon_{\min}} |\operatorname{Im} \omega| \ge \frac{\lambda_{\min}^{\Omega}}{\epsilon_{\max} \mu_{\max}} \right\} \end{aligned}$$

Let
$$\lambda_{\min}^{\Omega} := \min \sigma(\operatorname{curl} \operatorname{curl}_{0}|_{H(\operatorname{div} 0,\Omega)}) \ge 0$$

Theorem

The following spectral enclosure holds

$$\sigma(V) \subset i\left[-\frac{\sigma_{\max}}{\epsilon_{\min}}, 0\right] \cup \left\{\omega \in \mathbb{C} \setminus i\mathbb{R} : \operatorname{Im} \omega \in \left[-\frac{1}{2} \frac{\sigma_{\max}}{\epsilon_{\min}}, -\frac{1}{2} \frac{\sigma_{\min}}{\epsilon_{\max}}\right], \\ (\operatorname{Re} \omega)^2 - 3(\operatorname{Im} \omega)^2 + 2\frac{\sigma_{\max}}{\epsilon_{\min}} |\operatorname{Im} \omega| \ge \frac{\lambda_{\min}^{\Omega}}{\epsilon_{\max}\mu_{\max}}\right\}$$

Idea of the proof:

Let
$$\lambda_{\min}^{\Omega} := \min \sigma(\operatorname{curl} \operatorname{curl}_{0}|_{H(\operatorname{div} 0,\Omega)}) \ge 0$$

Theorem

The following spectral enclosure holds

$$\sigma(V) \subset i\left[-\frac{\sigma_{\max}}{\epsilon_{\min}}, 0\right] \cup \left\{\omega \in \mathbb{C} \setminus i\mathbb{R} : \operatorname{Im} \omega \in \left[-\frac{1}{2} \frac{\sigma_{\max}}{\epsilon_{\min}}, -\frac{1}{2} \frac{\sigma_{\min}}{\epsilon_{\max}}\right], \\ (\operatorname{Re} \omega)^2 - 3(\operatorname{Im} \omega)^2 + 2\frac{\sigma_{\max}}{\epsilon_{\min}} |\operatorname{Im} \omega| \ge \frac{\lambda_{\min}^{\Omega}}{\epsilon_{\max}\mu_{\max}}\right\}$$

Idea of the proof: • $\sigma(V) \subset \overline{W(V)} = \mathbb{R} \times [\frac{\sigma_{\max}}{\epsilon_{\min}}, 0].$

Let
$$\lambda_{\min}^{\Omega} := \min \sigma(\operatorname{curl} \operatorname{curl}_{0}|_{H(\operatorname{div} 0,\Omega)}) \ge 0$$

Theorem

The following spectral enclosure holds

$$\sigma(V) \subset i\left[-\frac{\sigma_{\max}}{\epsilon_{\min}}, 0\right] \cup \left\{\omega \in \mathbb{C} \setminus i\mathbb{R} : \operatorname{Im} \omega \in \left[-\frac{1}{2} \frac{\sigma_{\max}}{\epsilon_{\min}}, -\frac{1}{2} \frac{\sigma_{\min}}{\epsilon_{\max}}\right], \\ (\operatorname{Re} \omega)^2 - 3(\operatorname{Im} \omega)^2 + 2\frac{\sigma_{\max}}{\epsilon_{\min}} |\operatorname{Im} \omega| \ge \frac{\lambda_{\min}^{\Omega}}{\epsilon_{\max}\mu_{\max}}\right\}$$

Idea of the proof:

•
$$\sigma(V) \subset W(V) = \mathbb{R} \times [-\frac{\sigma_{\max}}{\epsilon_{\min}}, 0].$$

• $V \mathcal{J}$ -selfadjoint \Rightarrow

$$\sigma(V) = \sigma_{\operatorname{app}}(V) = \{\omega \in \mathbb{C} : \exists u_n \in \operatorname{dom}(V), \|u_n\| = 1, V(\omega)u_n \to 0\}$$

Let
$$\lambda_{\min}^{\Omega} := \min \sigma(\operatorname{curl} \operatorname{curl}_{0}|_{H(\operatorname{div} 0,\Omega)}) \ge 0$$

Theorem

The following spectral enclosure holds

$$\begin{aligned} \sigma(V) &\subset i \left[-\frac{\sigma_{\max}}{\epsilon_{\min}}, 0 \right] \cup \left\{ \omega \in \mathbb{C} \setminus i\mathbb{R} : \operatorname{Im} \omega \in \left[-\frac{1}{2} \frac{\sigma_{\max}}{\epsilon_{\min}}, -\frac{1}{2} \frac{\sigma_{\min}}{\epsilon_{\max}} \right], \\ (\operatorname{Re} \omega)^2 - 3(\operatorname{Im} \omega)^2 + 2\frac{\sigma_{\max}}{\epsilon_{\min}} |\operatorname{Im} \omega| \ge \frac{\lambda_{\min}^{\Omega}}{\epsilon_{\max} \mu_{\max}} \right\} \end{aligned}$$

Idea of the proof:

•
$$\sigma(V) \subset \overline{W(V)} = \mathbb{R} \times [-\frac{\sigma_{\max}}{\epsilon_{\min}}, 0].$$

• $V \mathcal{J}$ -selfadjoint \Rightarrow

$$\sigma(V) = \sigma_{\operatorname{app}}(V) = \{\omega \in \mathbb{C} : \exists u_n \in \operatorname{dom}(V), ||u_n|| = 1, V(\omega)u_n \to 0\}$$

• $(u_n)_n$ almost satisfies (in a weak sense) $\operatorname{curl}(\mu^{-1}\operatorname{curl}_0 u_n^1) - \omega(\omega\epsilon + i\sigma)u_n^1 = 0$. Look at the numerical range of this operator.

Let
$$\lambda_{\min}^{\Omega} := \min \sigma(\operatorname{curl} \operatorname{curl}_{0}|_{H(\operatorname{div} 0,\Omega)}) \ge 0$$

Theorem

The following spectral enclosure holds

$$\begin{aligned} \sigma(V) &\subset i \left[-\frac{\sigma_{\max}}{\epsilon_{\min}}, 0 \right] \cup \left\{ \omega \in \mathbb{C} \setminus i\mathbb{R} : \operatorname{Im} \omega \in \left[-\frac{1}{2} \frac{\sigma_{\max}}{\epsilon_{\min}}, -\frac{1}{2} \frac{\sigma_{\min}}{\epsilon_{\max}} \right], \\ (\operatorname{Re} \omega)^2 - 3(\operatorname{Im} \omega)^2 + 2 \frac{\sigma_{\max}}{\epsilon_{\min}} |\operatorname{Im} \omega| \ge \frac{\lambda_{\min}^{\Omega}}{\epsilon_{\max} \mu_{\max}} \right\} \end{aligned}$$

Idea of the proof:

•
$$\sigma(V) \subset \overline{W(V)} = \mathbb{R} \times [-\frac{\sigma_{\max}}{\epsilon_{\min}}, 0].$$

• $V \mathcal{J}$ -selfadjoint \Rightarrow

 $\sigma(V) = \sigma_{\text{app}}(V) = \{\omega \in \mathbb{C} : \exists u_n \in \text{dom}(V), ||u_n|| = 1, V(\omega)u_n \to 0\}$

- $(u_n)_n$ almost satisfies (in a weak sense) $\operatorname{curl}(\mu^{-1}\operatorname{curl}_0 u_n^1) \omega(\omega\epsilon + i\sigma)u_n^1 = 0$. Look at the numerical range of this operator.
- Get rid of gradient fields to prove 'hole around 0'

Faraday layers

Essential spectrum of dissipative Maxwell systems

Relation between V and $\mathcal L$

Theorem

$$\sigma(V) \setminus \{0\} = \sigma(\mathcal{L}) \setminus \{0\}, \quad \sigma_r(V) = \sigma_r(\mathcal{L}) = \emptyset$$

$$\sigma_p(V) \setminus \{0\} = \sigma_p(\mathcal{L}) \setminus \{0\}, \quad \sigma_e(V) \setminus \{0\} = \sigma_e(\mathcal{L}) \setminus \{0\}$$

Relation between V and \mathcal{L}

Theorem

$$\sigma(V) \setminus \{0\} = \sigma(\mathcal{L}) \setminus \{0\}, \quad \sigma_r(V) = \sigma_r(\mathcal{L}) = \emptyset$$

$$\sigma_p(V) \setminus \{0\} = \sigma_p(\mathcal{L}) \setminus \{0\}, \quad \sigma_e(V) \setminus \{0\} = \sigma_e(\mathcal{L}) \setminus \{0\}$$

Idea of the proof.

Relation between V and \mathcal{L}

Theorem

$$\sigma(V) \setminus \{0\} = \sigma(\mathcal{L}) \setminus \{0\}, \quad \sigma_r(V) = \sigma_r(\mathcal{L}) = \emptyset$$

$$\sigma_p(V) \setminus \{0\} = \sigma_p(\mathcal{L}) \setminus \{0\}, \quad \sigma_e(V) \setminus \{0\} = \sigma_e(\mathcal{L}) \setminus \{0\}$$

Idea of the proof. First step: $\mathcal{L}(\omega) = \operatorname{curl} \mu^{-1} \operatorname{curl}_0 - \omega(\omega \epsilon + i\sigma)$ has an explicit representation

$$\begin{aligned} \mathcal{L}(\omega) &= (T_0^* T_0 + l)^{1/2} \left(l + (T_0^* T_0 + l)^{-1/2} (\mathcal{W}(\omega) - l) (T_0^* T_0 + l)^{-1/2} \right) (T_0^* T_0 + l)^{1/2}; \\ T_0 &:= \mu^{-1/2} \text{curl}_0, \ \mathcal{W}(\omega) := -\omega (\omega \epsilon + i\sigma). \text{ Implies: curl } \mathcal{L}(\omega)^{-1} \text{ curl}_0 \text{ is bounded for } \omega \in \rho(\mathcal{L}). \end{aligned}$$

Relation between V and \mathcal{L}

Theorem

$$\sigma(V) \setminus \{0\} = \sigma(\mathcal{L}) \setminus \{0\}, \quad \sigma_r(V) = \sigma_r(\mathcal{L}) = \emptyset$$

$$\sigma_p(V) \setminus \{0\} = \sigma_p(\mathcal{L}) \setminus \{0\}, \quad \sigma_e(V) \setminus \{0\} = \sigma_e(\mathcal{L}) \setminus \{0\}$$

Idea of the proof. First step: $\mathcal{L}(\omega) = \operatorname{curl} \mu^{-1} \operatorname{curl}_0 - \omega(\omega \epsilon + i\sigma)$ has an explicit representation

$$\begin{split} \mathcal{L}(\omega) &= (T_0^* T_0 + l)^{1/2} \left(l + (T_0^* T_0 + l)^{-1/2} (\mathcal{W}(\omega) - l) (T_0^* T_0 + l)^{-1/2} \right) (T_0^* T_0 + l)^{1/2};\\ T_0 &:= \mu^{-1/2} \mathrm{curl}_0, \ \mathcal{W}(\omega) := -\omega (\omega \epsilon + \mathrm{i}\sigma). \text{ Implies: } \mathrm{curl} \ \mathcal{L}(\omega)^{-1} \mathrm{curl}_0 \text{ is bounded for } \omega \in \rho(\mathcal{L}). \end{split}$$
Second step: use

$$V(\omega)^{-1} = \begin{pmatrix} \omega \mathcal{L}(\omega)^{-1} & i\overline{\mathcal{L}(\omega)^{-1} \operatorname{curl}} \mu^{-1} \\ -i\mu^{-1} \operatorname{curl}_0 \mathcal{L}(\omega)^{-1} & \omega^{-1} (-\mu^{-1} + \mu^{-1} \overline{\operatorname{curl}}_0 \mathcal{L}(\omega)^{-1} \operatorname{curl} \mu^{-1}) \end{pmatrix}$$

for $\omega \in \rho(V)$.

F. Ferraresso (Sassari)

$$\text{Recall} \qquad \mathcal{W}_{\nabla}(\omega) = -P_{\nabla}[\omega(\omega + \mathrm{i}\chi)]P_{\nabla}, \qquad \qquad \chi(x) = \chi_{(0,1)}(x_1).$$

$$\text{Recall} \qquad \mathcal{W}_{\nabla}(\omega) = - P_{\nabla}[\omega(\omega + \mathrm{i}\chi)] P_{\nabla}, \qquad \qquad \chi(x) = \chi_{(0,1)}(x_1).$$

Note that $P_{\nabla} = \nabla \Delta^{-1} \operatorname{div}$, with Δ Dirichlet Laplacian acting from $\dot{H}_{0}^{1}(\Omega)$ to $H^{-1}(\Omega)$. Equivalent to study

$$-\operatorname{div}(\omega(\omega+\mathrm{i}\chi))\nabla:\dot{H}_{0}^{1}(\Omega)\rightarrow H^{-1}(\Omega)$$

$$\text{Recall} \qquad \mathcal{W}_{\nabla}(\omega) = - P_{\nabla}[\omega(\omega + \mathrm{i}\chi)] P_{\nabla}, \qquad \qquad \chi(x) = \chi_{(0,1)}(x_1).$$

Note that $P_{\nabla} = \nabla \Delta^{-1} \operatorname{div}$, with Δ Dirichlet Laplacian acting from $\dot{H}_{0}^{1}(\Omega)$ to $H^{-1}(\Omega)$. Equivalent to study

$$-\operatorname{div}(\omega(\omega+\mathrm{i}\chi))\nabla:\dot{H}_{0}^{1}(\Omega)\rightarrow H^{-1}(\Omega)$$

Note that for $\omega = 0$ and $\omega = -i$, $\omega(\omega + i\chi)$ vanishes identically in a subdomain of Ω ; we get essential spectrum.

$$\text{Recall} \qquad \mathcal{W}_{\nabla}(\omega) = - P_{\nabla}[\omega(\omega + \mathrm{i}\chi)] P_{\nabla}, \qquad \qquad \chi(x) = \chi_{(0,1)}(x_1).$$

Note that $P_{\nabla} = \nabla \Delta^{-1} \operatorname{div}$, with Δ Dirichlet Laplacian acting from $\dot{H}_0^1(\Omega)$ to $H^{-1}(\Omega)$. Equivalent to study

$$-\operatorname{div}(\omega(\omega+\mathrm{i}\chi))\nabla:\dot{H}_{0}^{1}(\Omega)\to H^{-1}(\Omega)$$

Note that for $\omega = 0$ and $\omega = -i$, $\omega(\omega + i\chi)$ vanishes identically in a subdomain of Ω ; we get essential spectrum.

For $\omega = -i/2$ we have $\omega^2 = -\omega(\omega + i)$ (relative contrast = -1)...can construct black hole modes.

Case
$$\omega = -i/2$$
.

 $-\operatorname{div}((\omega + i\chi_{\mathcal{K}})\nabla)$ is invertible $\iff (-i\omega + 1)\Lambda_L - i\omega\Lambda_R$ is invertible,

 $-\operatorname{div}((\omega + i\chi_{\mathcal{K}})\nabla)$ is invertible $\iff (-i\omega + 1)\Lambda_L - i\omega\Lambda_R$ is invertible,

Fix a o.n. basis of $L^2((0, L_2) \times (0, L_3))$. Call it $(\psi_n)_n$. Set $\omega = -i\nu$ with $\nu \in (0, 1)$.

 $-\operatorname{div}((\omega + i\chi_{\mathcal{K}})\nabla)$ is invertible $\iff (-i\omega + 1)\Lambda_L - i\omega\Lambda_R$ is invertible,

Fix a o.n. basis of $L^2((0, L_2) \times (0, L_3))$. Call it $(\psi_n)_n$. Set $\omega = -i\nu$ with $\nu \in (0, 1)$. Then

 $(-i\omega + 1)\Lambda_L - i\omega\Lambda_R = diag((\kappa_n((1 - \nu) \operatorname{coth}(\kappa_n) - \nu))_{n \in \mathbb{N}}).$

 $-\operatorname{div}((\omega + i\chi_{\mathcal{K}})\nabla)$ is invertible $\iff (-i\omega + 1)\Lambda_L - i\omega\Lambda_R$ is invertible,

Fix a o.n. basis of $L^2((0, L_2) \times (0, L_3))$. Call it $(\psi_n)_n$. Set $\omega = -i\nu$ with $\nu \in (0, 1)$. Then

 $(-i\omega + 1)\Lambda_L - i\omega\Lambda_R = diag((\kappa_n((1 - \nu) \coth(\kappa_n) - \nu))_{n \in \mathbb{N}}).$

For $v \neq 1/2$, this operator is a finite-rank perturbation of a boundedly invertible matrix, so -iv is not in the essential spectrum.

 $-\operatorname{div}((\omega + i\chi_{\mathcal{K}})\nabla)$ is invertible $\iff (-i\omega + 1)\Lambda_L - i\omega\Lambda_R$ is invertible,

Fix a o.n. basis of $L^2((0, L_2) \times (0, L_3))$. Call it $(\psi_n)_n$. Set $\omega = -i\nu$ with $\nu \in (0, 1)$. Then

$$(-i\omega + 1)\Lambda_L - i\omega\Lambda_R = diag((\kappa_n((1 - \nu) \operatorname{coth}(\kappa_n) - \nu))_{n \in \mathbb{N}}).$$

For $\nu \neq 1/2$, this operator is a finite-rank perturbation of a boundedly invertible matrix, so $-i\nu$ is not in the essential spectrum. For $\nu = 1/2$,

$$u_n(x_1, x_2, x_3) := \begin{cases} (1 - (x_1 - 1)\kappa_n(\coth(\kappa_n) - 1))\psi_n(x_2, x_3)\frac{\sinh(\kappa_n x_1)}{\sinh(\kappa_n)}, & x_1 \in (0, 1), \\ \psi_n(x_2, x_3)\exp(-\kappa_n(x_1 - 1)), & x_1 > 1, \end{cases}$$

forms a Weyl singular sequence, so $-i/2 \in \sigma_e(V)$.