Let m_1, m_2, \ldots be an infinite sequence of meromorphic functions with $\text{Im} \, m_j(\lambda) > 0$ if $\text{Im} \, \lambda > 0$ and $\text{Im} \, m_j(\lambda) < 0$ if $\text{Im} \, \lambda < 0$ (Nevanlinna functions). Suppose that there exists a non-empty interval $I \subseteq \mathbb{R}$ such that for every non-empty subinterval $J \subseteq I$ holds

$$\lim_{j \to \infty} \# \{\text{pole of } m_j \text{ in } J\} = \infty.$$

Let g be a function which is analytic in a complex neighborhood of I.

Open problems:

i) Show that for every open complex neighborhood U of J,

$$\lim_{j \to \infty} \# \{\text{zero of } (m_j - g) \text{ in } U\} = \infty.$$

ii) Show that there exists a constant $C > 0$, independent of j, such that for every open complex neighborhood U of J,

$$\left| \# \{\text{zero of } (m_j - g) \text{ in } U\} - \# \{\text{pole of } m_j \text{ in } U\} \right| \leq C.$$

The result is known to hold if $\mu(J) := \lim_{j \to \infty} j^{-1} \# \{\text{pole of } m_j \text{ in } J\}$ exists.