LAPTEV-SAFRONOV CONJECTURE

R. L. FRANK

Consider a Schrödinger operator $-\Delta + V$ in \mathbb{R}^d with a complex potential V.

Open problems:

- i) What is the largest p such that all non-real eigenvalues lie in a disk around 0 of radius $D(\int_{\mathbb{R}^d} |V|^p \, \mathrm{d}x)^{(p-d/2)^{-1}}$ (the constant D > 0 shall not depend on V)?
- ii) What happens to embedded eigenvalues of self-adjoint Schrödinger operators under non-self-adjoint perturbations?

Both problems are related to the Laptev-Safronov conjecture which states that for every $d \in \mathbb{N}$ and $0 < \gamma \leq d/2$ there exists a constant $D_{\gamma,d} > 0$ such that for every potential V every non-real eigenvalue λ satisfies

$$|\lambda|^{\gamma} \leq D_{\gamma,d} \int_{\mathbb{R}^d} |V|^{\gamma + \frac{d}{2}} \,\mathrm{d}x;$$

here $\gamma = p - d/2$ with p from problem i). The Laptev-Safronov conjecture is known to be true in dimension d = 1 if $\gamma = 1/2$ and in dimension $d \ge 2$ if $0 < \gamma \le 1/2$.