DAVIES' CONJECTURE ABOUT APPROXIMATE DIAGONALIZATION

M. EMBREE

Consider a non-normal matrix $A \in \mathbb{C}^{n \times n}$. Define $\underline{s}(A, \varepsilon) := \inf_{\substack{\Delta, V \\ V^{-1}(A + \Delta)V \text{ diagonal}}} \|V\| \, \|V^{-1}\|\varepsilon + \|\Delta\|.$

Open problem: Prove Davies' conjecture (2007): There exists a constant $C_n > 0$, independent of $A \in \mathbb{C}^{n \times n}$, such that $\underline{s}(A, \varepsilon) \leq C_n \sqrt{\varepsilon}$.

It is known that the conjecture holds for Jordan blocks (then $C_n = 2$ suffices) and for 3×3 matrices with $||A|| \le 1$ (then $C_n = 4$ suffices).

Date: 2015 AIM.