SCHAUDER BASES OF PERIODIC FUNCTIONS AND MULTIPLIERS

L. BOULTON

Let $e_n(x) := \sqrt{2} \sin(n\pi x)$. Then $\{e_n\}$ is a Schauder basis of $L^p(0, 1)$ for all p > 1. Let $f \in C(\mathbb{R}, \mathbb{C})$ satisfy f(x+2) = f(x), f(-x) = -f(x), f(1/2+x) = f(1/2-x)and define $f_n(x) := f(nx)$. Let $A : L^p(0, 1) \to L^p(0, 1)$ be the linear extension of the map $Ae_n = f_n$. Then $\{f_n\}$ is a Schauder basis of $L^p(0, 1)$ if and only if $A : L^p(0, 1) \longrightarrow L^p(0, 1)$ is a bounded operator with a bounded inverse. Let $\{c_k\}$ be the Fourier coefficients of f. Then A can be written as $A = \sum_k c_k M_k$ where M_k are the linear extensions of the map $M_k e_n = e_{kn}$.

Open problem: Find necessary and sufficient conditions on $\{c_k\}$ for $0 \notin \sigma(A)$ whenever $p \neq 2$.

Date: 2015 AIM.