SCHAUDER BASES OF PERIODIC FUNCTIONS AND
MULTIPLIERS

L. BOULTON

Let \(e_n(x) := \sqrt{2} \sin(n\pi x) \). Then \(\{e_n\} \) is a Schauder basis of \(L^p(0, 1) \) for all \(p > 1 \).

Let \(f \in C(\mathbb{R}, \mathbb{C}) \) satisfy \(f(x + 2) = f(x) \), \(f(-x) = -f(x) \), \(f(1/2 + x) = f(1/2 - x) \) and define \(f_n(x) := f(nx) \). Let \(A : L^p(0, 1) \to L^p(0, 1) \) be the linear extension of the map \(Ae_n = f_n \). Then \(\{f_n\} \) is a Schauder basis of \(L^p(0, 1) \) if and only if \(A : L^p(0, 1) \to L^p(0, 1) \) is a bounded operator with a bounded inverse. Let \(\{c_k\} \) be the Fourier coefficients of \(f \). Then \(A \) can be written as \(A = \sum_k c_k M_k \) where \(M_k \) are the linear extensions of the map \(M_k e_n = e_{kn} \).

Open problem: Find necessary and sufficient conditions on \(\{c_k\} \) for \(0 \notin \sigma(A) \) whenever \(p \neq 2 \).