Real resonances Dissipative Schrödinger operators Positive resonances

Real Resonances of Schrödinger Operators with Complex Potentials

Xue Ping WANG

Laboratoire de Mathématiques Jean Leray Université de Nantes, France

イロン イ団 とく ヨン ト ヨン

Notation

Consider Schrödinger operators with with a complex-valued potential

$$P=-\Delta+V(x)$$
 $V(x)=V_1(x)-iV_2(x),$ $x\in \mathbf{R}^n, n\geq 1,$ (1)

with V_j real and

$$|V_j(x)| \le C \langle x \rangle^{-\rho}, x \in \mathbf{R}^n, \rho > 0.$$
(2)

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ▲≣ ● のへの

V and P are called dissipative if $V_2 \ge 0$ and $V_2 \ne 0$. Denote $P_1 = -\Delta + V_1$.

Real resonances

Real resonances \cong spectral singularities of J.T Schwartz (CPAM, 1960).

Definition. Let $\lambda \ge 0$. Assume that $\rho > 2$ if $\lambda = 0$ and $\rho > 1$ if $\lambda > 0$. We call λ a resonance of *P* if

$$(P-\lambda)u=0$$

admits a solution $u \in H^2_{loc}$ verifying one of the Sommerfeld's radiation conditions:

$$u(x) = rac{e^{\pm i\sqrt{\lambda}|x|}}{|x|^{rac{n}{2}-1}}(a(heta)+o(1)), \quad |x| o \infty,$$

for some $a \in L^2(\mathbf{S}^{n-1})$ and $a \neq 0$. Here $\theta = x/|x|$.

Open Question

Complex eigenvalues of *P* can only accumulate at real resonances (and eventually, at zero).

If *P* has only a finite number of real resonances and if the resolvent $R(z) = (P - z)^{-1}$ has only isolated singularity at each resonance, then the number of the complex eigenvalues of *P* is finite.

Question. What can one say about the singularity of the resolvent $R(z) = (P - z)^{-1}$ at a given real resonance λ ?

Radiation conditions

Let $u \in L^{2,-s}$, s > 1/2 appropriate, and $Pu = \lambda u$, $\lambda > 0$. Then for $\rho > 1$, one has

$$u(x) = \frac{e^{i\sqrt{\lambda}|x|}}{|x|^{\frac{n}{2}-1}}a_{+}(\theta) + \frac{e^{-i\sqrt{\lambda}|x|}}{|x|^{\frac{n}{2}-1}}a_{-}(\theta) + o(\frac{1}{|x|^{\frac{n}{2}-1}})$$

and

$$\|a_{-}\|^{2} = \|a_{+}\|^{2} + \frac{1}{\sqrt{\lambda}}\int_{\mathbf{R}^{n}}V_{2}(x)|u(x)|^{2}dx.$$

If $V_2 = 0$, then *u* is outgoing if and only if *u* is incoming and P_1 has no positive resonances. (S. Agmon, 1974).

Question. What are Sommerfeld's radiation conditions when V_2 is long-range?

Dissipative Schrödinger operators

To see the roles played by the radiation conditions of resonant states, let *P* be a dissipative Schrödinger operator (i.e. $V_2 \ ge0$, $V_2 \neq 0$). Assume that $\rho > 2$ and $n \ge 3$. Then one can show that

イロト イポト イヨト イヨト 一日

- There are no real resonances in $[0, c_0]$ for some $c_0 > 0$.
- For any λ > 0, ∃V ∈ C₀[∞], dissipative, such that λ is a real resonance of −Δ + V.
- There are no outgoing resonant states for dissipative Schrödinger operators.

Consequences

As a result, one deduces

- Complex eigenvalues of *P* can not accumulate at low energies if $\rho > 2$ and $n \ge 3$.
- Time-decay estimates of the semigroup *e^{-itP}* for positive times.
 For example, if *n* = 3 and *ρ* > 2, one has the dispersive estimate

$$\|e^{-it^{p}}u\|_{L^{\infty}} \leq Ct^{-3/2}\|u\|_{L^{1}}, \quad t > 0, \forall u \in L^{1}.$$
 (3)

Rate of energy dispersion of eigenfunctions

(3) implies that for any $z \in \mathbf{C}_{-}$ and any u with Pu = zu, $||u||_{L^1} = 1$, one has

$$\|u\|_{\infty} \leq Ce^{-1}|\Im z|^{3/2}.$$

Singularity of the resolvent

Assume $\rho > 1$ and n = 3, *V* complex potential. Let $\lambda > 0$ be a resonance of *P* with some incoming resonant states. Denote $K_0 = R_0(\lambda - i0)V$, where $R_0(z) = (-\Delta - z)^{-1}$. Let $\phi_j, j = 1, \dots, m$, be a basis of ker $(1 + K_0)$ in $L^{2,-s}$ for s > 1/2 and close to 1/2. Define the matrix *M* by

$$M = (\langle B_0 V \phi_i, V^* \phi_j^* \rangle)_{1 \le i,j \le m}$$
(4)

where $f^* = \overline{f}$ and B_0 is an operator with integral kernel

$$B_0(x,y)=e^{-i\sqrt{\lambda}|x-y|}.$$

Singularity of the resolvent

Theorem 1

Assume $\rho > 5$, *E* semisimple or nonderogatory, *M* non-singular. Then one has: $\exists \epsilon_0 > 0$ and an operator *T* with finite rank such that

$$R(z)-rac{T}{\lambda-z}=O(1):L^{2,s}
ightarrow L^{2,-s},s>5/2,$$

for any $z \in \mathbf{C}_{-}$ with $|z - \lambda| < \epsilon_0$.

Question. What can one say about the singularity of the resolvent at a given positive resonance in more general situations?