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Notation

Consider Schrödinger operators with with a complex-valued potential

P = −∆ + V (x) V (x) = V1(x)− iV2(x), x ∈ Rn,n ≥ 1, (1)

with Vj real and

|Vj (x)| ≤ C〈x〉−ρ, x ∈ Rn, ρ > 0. (2)

V and P are called dissipative if V2 ≥ 0 and V2 6= 0.
Denote P1 = −∆ + V1.
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Real resonances

Real resonances ∼= spectral singularities of J.T Schwartz (CPAM,
1960).

Definition. Let λ ≥ 0. Assume that ρ > 2 if λ = 0 and ρ > 1 if λ > 0.
We call λ a resonance of P if

(P − λ)u = 0

admits a solution u ∈ H2
loc verifying one of the Sommerfeld’s radiation

conditions:

u(x) =
e±i
√
λ|x|

|x | n2−1 (a(θ) + o(1)), |x | → ∞,

for some a ∈ L2(Sn−1) and a 6= 0. Here θ = x/|x |.
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Open Question

Complex eigenvalues of P can only accumulate at real resonances
(and eventually, at zero).

If P has only a finite number of real resonances and if the resolvent
R(z) = (P − z)−1 has only isolated singularity at each resonance,
then the number of the complex eigenvalues of P is finite.

Question. What can one say about the singularity of the resolvent
R(z) = (P − z)−1 at a given real resonance λ?
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Radiation conditions

Let u ∈ L2,−s, s > 1/2 appropriate, and Pu = λu, λ > 0. Then for
ρ > 1, one has

u(x) =
ei
√
λ|x|

|x | n2−1 a+(θ) +
e−i
√
λ|x|

|x | n2−1 a−(θ) + o(
1

|x | n2−1 )

and
‖a−‖2 = ‖a+‖2 +

1√
λ

∫
Rn

V2(x)|u(x)|2dx .

If V2 = 0, then u is outgoing if and only if u is incoming and P1 has no
positive resonances. (S. Agmon, 1974).
Question. What are Sommerfeld’s radiation conditions when V2 is
long-range?
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Dissipative Schrödinger operators

To see the roles played by the radiation conditions of resonant states,
let P be a dissipative Schrödinger operator (i.e. V2 ge0,V2 6= 0).
Assume that ρ > 2 and n ≥ 3. Then one can show that

There are no real resonances in [0, c0] for some c0 > 0.
For any λ > 0, ∃V ∈ C∞0 , dissipative, such that λ is a real
resonance of −∆ + V .
There are no outgoing resonant states for dissipative
Schrödinger operators.
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Consequences

As a result, one deduces

Complex eigenvalues of P can not accumulate at low energies if
ρ > 2 and n ≥ 3.
Time-decay estimates of the semigroup e−itP for positive times.
For example, if n = 3 and ρ > 2, one has the dispersive estimate

‖e−itPu‖L∞ ≤ Ct−3/2‖u‖L1 , t > 0, ∀u ∈ L1. (3)

Rate of energy dispersion of eigenfunctions
(3) implies that for any z ∈ C− and any u with Pu = zu, ‖u‖L1 = 1,
one has

‖u‖∞ ≤ Ce−1|=z|3/2.

Xue Ping WANG Dissipative operators



Real resonances
Dissipative Schrödinger operators

Positive resonances

Singularity of the resolvent

Assume ρ > 1 and n = 3, V complex potential. Let λ > 0 be a
resonance of P with some incoming resonant states. Denote
K0 = R0(λ− i0)V , where R0(z) = (−∆− z)−1. Let φj , j = 1, · · · ,m,
be a basis of ker(1 + K0) in L2,−s for s > 1/2 and close to 1/2. Define
the matrix M by

M = (〈B0Vφi ,V ∗φ∗j 〉)1≤i,j≤m (4)

where f ∗ = f and B0 is an operator with integral kernel

B0(x , y) = e−i
√
λ|x−y|.
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Singularity of the resolvent

Theorem 1
Assume ρ > 5, E semisimple or nonderogatory, M non-singular.
Then one has: ∃ε0 > 0 and an operator T with finite rank such that

R(z)− T
λ− z

= O(1) : L2,s → L2,−s, s > 5/2,

for any z ∈ C− with |z − λ| < ε0.

Question. What can one say about the singularity of the resolvent at
a given positive resonance in more general situations?
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