Spectral projections and resolvent bounds for quantized partially elliptic quadratic forms

Joe Viola

Laboratoire de Mathématiques Jean Leray Université de Nantes Joseph.Viola@univ-nantes.fr

14 March 2013

Examples and resolvent growth

We will discuss the class of elliptic(ish) quadratic operators Q. As examples, consider the complex harmonic oscillator

$$Q_{\theta} = -e^{-2i\theta} \frac{d^2}{dx^2} + e^{2i\theta} x^2,$$

studied by E. B. Davies and others, and quadratic Kramers-Fokker-Planck

$$P_a = \frac{1}{2}(v^2 - \partial_v^2) + a(v\partial_x - x\partial_v).$$

Question: What is the behavior of the resolvent norm

$$||(Q-z)^{-1}||_{\mathcal{L}(L^2)}, \quad |z| \to \infty?$$

Particularly, what is the rate of exponential growth deep within the numerical range, close to the spectrum?

$\log_{10} ||(P_a - z)^{-1}||_{\mathcal{L}(L^2)}$ for $a = 1/\sqrt{2}$

Spectral projections

We may define spectral projections around an eigenvalue " μ_{α} " via

$$\Pi_{\alpha} = \frac{1}{2\pi i} \int_{|z-\mu_{\alpha}|=\varepsilon} (z-Q)^{-1} dz.$$

If $||\Pi_{\alpha}||$ large, then $||(Q-z)^{-1}||$ somewhere large, but not vice versa (cancellation).

We may find v_{α} with $||v_{\alpha}|| = 1$ and

$$||\Pi_{\alpha}|| = ||\Pi_{\alpha} v_{\alpha}||.$$

If $||\Pi_{\alpha}v_{\alpha}||$ is large, maybe so is $||(Q-z)^{-1}v_{\alpha}||$?

Good approximation by $||(P_a - z)^{-1}v_\alpha||$ for $a = 1/\sqrt{2}$ For corresponding α , compute relative error

$$\log_{10}\left(\frac{||(P_a-z)^{-1}||}{||(P_a-z)^{-1}v_{\alpha}||}-1\right).$$

