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Examples and resolvent growth

We will discuss the class of elliptic(ish) quadratic operators Q.
As examples, consider the complex harmonic oscillator
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studied by E. B. Davies and others, and quadratic
Kramers-Fokker-Planck

P, = %(v2 — 92) + a(vd, — x0,).

Question: What is the behavior of the resolvent norm
1@ —2) Mgy, el — o0?

Particularly, what is the rate of exponential growth deep within
the numerical range, close to the spectrum?
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Spectral projections

We may define spectral projections around an eigenvalue “u,”

via |
I, = (z— Q)_l dz.

2mi lz—pal|=¢

If ||I1,,|| large, then ||(Q — z)~'|| somewhere large, but not vice
versa (cancellation).

We may find v, with ||v,|| =1 and
o] = [[Taval|-

If ||TI,va|| is large, maybe so is ||(Q — 2) " 'va||?



Good approximation by ||(P, — z)'va|| fora = 1//2

For corresponding «, compute relative error
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