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Multi-point problems

Consider the eigenvalue problem
—u" =Aru on (-1,1), (1)

where r € C1[—1,1], r > 0 and A € R, together with the
multi-point boundary conditions

u(x1) =) aju(ny), ()
i=1

where m™ > 1 are integers, and, for i =1,..., m=*:
af eR, 7 € (-1,1).

An eigenvalue is a (real) number A for which (1)-(2) has a
non-trivial solution u, called an eigenfunction.
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Functional setting, nodal sets

More precisely, we consider solutions as elements of

X :={u € C?[—1,1] : u satisfies (2)}.

Similarly to Sturm-Liouville theory with separated boundary
conditions, we get eigenfunctions with prescribed nodal properties.

Forv==xand k=1,2,..., wedefine T/ C X by: ve T, <
(a) '(£1) # 0 and vu/'(—1) > 0;

(b) " has only simple zeros, and exactly k zeros in (—1,1);

(c) u has a zero strictly between each consecutive zero of u'.
We also define T, = T,j uT,, k=12,...

NB A function u € Tj has at least kK — 1 and at most k zeros
in (—=1,1).

Second order multi-point problems ICMS March 2013 2



Main result

It is convenient to use the notation

m*
+
O[i = (O[li,,aii)ERm ) ‘a:t|:z|ali‘
i=1

Theorem 1 (Rynne-G. NA 2011)

For any r € C[—1,1], r > 0, there exists v = ~(r) € (0, 1] such
that if |a™| < v then all the eigenvalues are real and simple, and
they form a strictly increasing sequence A\, = \¢(r) >0, k > 1.
Furthermore, each eigenvalue \x has an eigenfunction u, € T,",
and we have limy_,o Ay = 00.
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Proof

Let w(\, 6) be the solution of —u” = Aru satisfying
w(X, 0)(0) =sind, w(X,0)(0) = A2 cosb,

[case r = 1: w(),0)(x) = sin(A\Y2x + 0)]

and consider the C! functions I : (0,00) x R x R™ — R
defined by

£\, 0,a%) == w(\, 60)(£1) Zaw)\G ().

Now, \ eigenvalue of (1)-(2) <— I‘i()\,ﬂ,a )=20

and then u = w(\, 0) is a corresponding eigenfunction.
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m*

M\ 0,0%) == w(),0)(£1) = > afw(\0)(nf) =0  (3)
i=1

For a* = 0 (Dirichlet b.c.) Sturm-Liouville theory yields
AW =w(0,69), k=1,2,...,
with the usual properties.
[case r = 1: AQ = (4F)2 and uQ(x) = sin(5Fx + &F), i.e. 09 = 7]

We solve (3) for a* # 0 by continuation from the case a® = 0.

By the implicit function theorem, we get solutions
)‘k(ai)’ Hk(a:t)7 uk(ai) = W(Ak(ai%ek(ai))v k=1,2,...,
for || < y(r) with an appropriate v(r) € (0, 1].
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m*

M=(\0,0%) = w(\,0)(£1) = Y afw(\,0)(n7) =0
i=1

This involves checking that the Jacobian determinant

M(A\0,a7) T (N60,a7)

JN, 6, a%) =
( ) Fj{(A,H,oDL) F;()\,G,oﬁ)

(4)

A key step is to prove that w(\,0)(£1) # 0 if o] < y(r).

A priori estimates for w(\, 6), wa(\, 0) and wy(A, 0) also
contribute to the definition of ~(r).
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Open problems

In case r = 1, w(}, 0)(x) = sin(A\/2x + ), and the analysis is
easier. In fact, we can take v(1) = 1.

Inspecting the simple 3-point problem
—u" =Xu on (0,1), u(0) =0, u(l)=au(n),
for various values of & € R and n € (0,1), one can observe that:

(i) for a« =1, we may have /(1) =0, so u & Ty for any k > 1;
(ii) for a > 1, there may be no eigenfunctions in the sets
T, Tix1,- -+, Tiep, for arbitrarily large n.

We have only been interested in real eigenvalues here.

Problem 1
What happened to the ‘missing eigenvalues’ in (ii), have they
become complex?
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For r = 1, Theorem 1 still holds [Rynne NA 2010] for the ‘p-linear’
problem

m*
(P2 = Ml 2, () = Y aful). ()
i=1

1

There has been a lot work on this, in particular in connection with
bifurcation for fully nonlinear problems.

Problem 2
Extend Theorem 1 to problem (5) with r # 1.

We haven't really tried to do this, but there seem to be
considerable technical difficulties, for instance related to
integration by parts arguments, a priori estimates, etc.
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