The spectrum of second order multi-point problems

François Genoud Heriot-Watt University Edinburgh

> ICMS Edinburgh March 2013

Multi-point problems

Consider the eigenvalue problem

$$-u'' = \lambda r u \quad \text{on } (-1,1), \tag{1}$$

where $r \in C^1[-1,1]$, r > 0 and $\lambda \in \mathbb{R}$, together with the multi-point boundary conditions

$$u(\pm 1) = \sum_{i=1}^{m^{\pm}} \alpha_i^{\pm} u(\eta_i^{\pm}),$$
 (2)

where $m^{\pm} \ge 1$ are integers, and, for $i = 1, \ldots, m^{\pm}$:

$$\alpha_i^{\pm} \in \mathbb{R}, \quad \eta_i^{\pm} \in (-1, 1).$$

An eigenvalue is a (real) number λ for which (1)-(2) has a non-trivial solution u, called an eigenfunction.

Second order multi-point problems

Functional setting, nodal sets

More precisely, we consider solutions as elements of

$$X := \{ u \in C^2[-1, 1] : u \text{ satisfies } (2) \}.$$

Similarly to Sturm-Liouville theory with separated boundary conditions, we get eigenfunctions with prescribed nodal properties.

For
$$\nu = \pm$$
 and $k = 1, 2, ...$, we define $T_k^{\nu} \subset X$ by: $u \in T_k^{\nu} \iff$
(a) $u'(\pm 1) \neq 0$ and $\nu u'(-1) > 0$;
(b) u' has only simple zeros, and exactly k zeros in $(-1, 1)$;
(c) u has a zero strictly between each consecutive zero of u' .
We also define $T_k = T_k^+ \cup T_k^-$, $k = 1, 2, ...$
NB A function $u \in T_k$ has at least $k - 1$ and at most k zeros in $(-1, 1)$.

Main result

It is convenient to use the notation

$$\alpha^{\pm} := (\alpha_1^{\pm}, \dots, \alpha_{m^{\pm}}^{\pm}) \in \mathbb{R}^{m^{\pm}}, \quad |\alpha^{\pm}| := \sum_{i=1}^{m^{\pm}} |\alpha_i^{\pm}|.$$

Theorem 1 (Rynne-G. NA 2011)

For any $r \in C^1[-1,1]$, r > 0, there exists $\gamma = \gamma(r) \in (0,1]$ such that if $|\alpha^{\pm}| < \gamma$ then all the eigenvalues are real and simple, and they form a strictly increasing sequence $\lambda_k = \lambda_k(r) > 0$, $k \ge 1$. Furthermore, each eigenvalue λ_k has an eigenfunction $u_k \in T_k^+$, and we have $\lim_{k\to\infty} \lambda_k = \infty$.

Proof

Let $w(\lambda, \theta)$ be the solution of $-u'' = \lambda r u$ satisfying $w(\lambda, \theta)(0) = \sin \theta, \quad w(\lambda, \theta)'(0) = \lambda^{1/2} \cos \theta,$ [case $r \equiv 1$: $w(\lambda, \theta)(x) = \sin(\lambda^{1/2}x + \theta)$] and consider the C^1 functions $\Gamma^{\pm} : (0, \infty) \times \mathbb{R} \times \mathbb{R}^{m^{\pm}} \to \mathbb{R}$ defined by m^{\pm}

$$\Gamma^{\pm}(\lambda,\theta,\alpha^{\pm}) := w(\lambda,\theta)(\pm 1) - \sum_{i=1}^{m^{\pm}} \alpha_i^{\pm} w(\lambda,\theta)(\eta_i^{\pm}).$$

Now, λ eigenvalue of (1)-(2) $\iff \Gamma^{\pm}(\lambda, \theta, \alpha^{\pm}) = 0$

and then $u = w(\lambda, \theta)$ is a corresponding eigenfunction.

$$\Gamma^{\pm}(\lambda,\theta,\alpha^{\pm}) := w(\lambda,\theta)(\pm 1) - \sum_{i=1}^{m^{\pm}} \alpha_i^{\pm} w(\lambda,\theta)(\eta_i^{\pm}) = 0 \qquad (3)$$

For $\alpha^{\pm} = 0$ (Dirichlet b.c.) Sturm-Liouville theory yields

$$\lambda_k^0, \ u_k^0 = w(\lambda_k^0, \theta_k^0), \quad k = 1, 2, \dots,$$

with the usual properties.

[case $r \equiv 1$: $\lambda_k^0 = (\frac{k\pi}{2})^2$ and $u_k^0(x) = \sin(\frac{k\pi}{2}x + \frac{k\pi}{2})$, i.e. $\theta_k^0 = \frac{k\pi}{2}$] We solve (3) for $\alpha^{\pm} \neq 0$ by continuation from the case $\alpha^{\pm} = 0$. By the implicit function theorem, we get solutions

$$\lambda_k(\alpha^{\pm}), \ \theta_k(\alpha^{\pm}), \ u_k(\alpha^{\pm}) = w(\lambda_k(\alpha^{\pm}), \theta_k(\alpha^{\pm})), \quad k = 1, 2, \dots,$$

for $|\alpha^{\pm}| < \gamma(r)$ with an appropriate $\gamma(r) \in (0, 1]$.

$$\Gamma^{\pm}(\lambda,\theta,\alpha^{\pm}) := w(\lambda,\theta)(\pm 1) - \sum_{i=1}^{m^{\pm}} \alpha_i^{\pm} w(\lambda,\theta)(\eta_i^{\pm}) = 0$$

This involves checking that the Jacobian determinant

$$J(\lambda,\theta,\alpha^{\pm}) := \begin{vmatrix} \Gamma_{\lambda}^{-}(\lambda,\theta,\alpha^{-}) & \Gamma_{\theta}^{-}(\lambda,\theta,\alpha^{-}) \\ \Gamma_{\lambda}^{+}(\lambda,\theta,\alpha^{+}) & \Gamma_{\theta}^{+}(\lambda,\theta,\alpha^{+}) \end{vmatrix} \neq 0.$$
(4)

A key step is to prove that $w(\lambda, \theta)'(\pm 1) \neq 0$ if $|\alpha^{\pm}| < \gamma(r)$.

A priori estimates for $w(\lambda, \theta)$, $w_{\lambda}(\lambda, \theta)$ and $w_{\theta}(\lambda, \theta)$ also contribute to the definition of $\gamma(r)$.

Open problems

In case $r \equiv 1$, $w(\lambda, \theta)(x) = \sin(\lambda^{1/2}x + \theta)$, and the analysis is easier. In fact, we can take $\gamma(1) = 1$.

Inspecting the simple 3-point problem

$$-u'' = \lambda u$$
 on (0,1), $u(0) = 0$, $u(1) = \alpha u(\eta)$,

for various values of $\alpha \in \mathbb{R}$ and $\eta \in (0,1)$, one can observe that:

We have only been interested in real eigenvalues here.

Problem 1

What happened to the 'missing eigenvalues' in (ii), have they become complex?

Second order multi-point problems

For $r \equiv 1$, Theorem 1 still holds [Rynne NA 2010] for the '*p*-linear' problem

$$-(|u'|^{p-2}u')' = \lambda r |u|^{p-2}u, \qquad u(\pm 1) = \sum_{i=1}^{m^{\perp}} \alpha_i^{\pm} u(\eta_i^{\pm}).$$
(5)

....+

There has been a lot work on this, in particular in connection with bifurcation for fully nonlinear problems.

Problem 2 Extend Theorem 1 to problem (5) with $r \neq 1$.

We haven't really tried to do this, but there seem to be considerable technical difficulties, for instance related to integration by parts arguments, a priori estimates, etc.