Self-adjoint Jacobi operators possessing
generalized eigenvectors with the strongly
increasing phase sequence: do they exist?
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Let us consider the right-side infinite Jacobi matrix
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wp (g2 Wy
Wy (g3 W3

w3 Q4

determined by real sequences {gn},>;, {Wn},>;, wn # 0, and the Jacobi op-
erator J in the Hilbert space ¢*(N) of square-summable complex sequences on
N := {1,2,...}. J is the restriction of the formal Jacobi operator J to the do-
main

D(J) = {ue A(N): Jue AN},

where J acts in the vector space ¢(N) of all complex sequences on N, and it is given
by

(Ju)(n) := wp_qu(n — 1) + gu(n) + wyuin+1), n €N, (0.1)
for any u = {u(n)},>, € {(N).

For A\ € C we consider generalized eigenvectors of J for A, i. e., such u =
{u(n)},>, € ¢(N) that

(T = Nu)(n) =0, n>2. (0.2)

By Sol(A) we denote the linear space of all the generalized eigenvectors of J for
A, so dim Sol(\) = 2.

Various forms of asymptotics for two linearly independent generalized eigenvec-
tors have been found through some asymptotic tricks for difference equations, see
e.g[1,3,4,5,6,7,8,9,12, 13, 14, 15]. For many of the described Jacobi operators,
for \-s from some non-empty open intervals the authors proved the existence of two
linearly independent vectors u,,u_ from Sol(\), having the general form

ux(n) = r(n)exp(Lia,) - s+(n), n € N. (0.3)
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In this formula 7 is the positive explicit modulus, a — the real explicit phase, s+
are the complex implicit terms with some explicit “convergence properties”, for
instance: sy (n) — 1 or s+(n) = pL(n)+o(1), with p1 being explicitly computable
non-zero periodic sequences. In particular, such situation seems to be typical for
the so-called Jordan boz case (or critical case) (— see e. g. [3] for the definition).
In many examples r(n) :=n~" with b < %

It is proved in [11] that such a form of a base of Sol(\) guarantees non-existence
of subordinated solutions of (0.2), and consequently, by subordination theory (|2,
10]), this gives the absolute continuity of J on the appropriate interval of R.

According to my knowledge, in the existing literature dealing with asymptotics
of some base vectors u,,u_ of Sol(\) with the general form 0.3 (in the self-adjoint
case), we can find only the explicit phase sequences a being “weakly increasing”,
ie, (Aa)(n) — 0 or a(n)=n%c+o(l)) withec>0and 0 < a < 1., if we
limit ourselves to all A\-s from some non-empty open intervals of R.

Open problem

The problem is to construct such a self-adjoint Jacobi operator (by finding ex-
plicit formulae on its weights {w,},~, and diagonals {g,},~,) for which the asymp-
totic formula (0.3) of some base vectors u,,u_ of Sol()\) holds, with the “strongly
increasing” phase sequences a for all A\-s from a non-empty open interval A C R.
More precisely, for any A € A we would like (0.3) with the following conditions to
be satisfied:

1. » — positive sequence, a — real sequence
2. (Aa)(n) — 400 or a(n)=n%c+o(1)) withe>0and a>1

3. s1(n) = p+£(n) 4+ o(1), with py being explicitly computable non-zero periodic
sequences (e. g., px = 1, if possible),

where r, a, ¢, p+ can depend on \ € A.
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