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Let us consider the right-side infinite Jacobi matrix
q1 w1

w1 q2 w2

w2 q3 w3

w3 q4
. . .

. . . . . .


determined by real sequences {qn}n≥1, {wn}n≥1, wn 6= 0, and the Jacobi op-
erator J in the Hilbert space `2(N) of square-summable complex sequences on
N := {1, 2, . . .}. J is the restriction of the formal Jacobi operator J to the do-
main

D(J) := {u ∈ `2(N) : J u ∈ `2(N)},

where J acts in the vector space `(N) of all complex sequences on N, and it is given
by

(J u)(n) := wn−1u(n− 1) + qnu(n) + wnu(n+ 1), n ∈ N, (0.1)

for any u = {u(n)}n≥1 ∈ `(N).
For λ ∈ C we consider generalized eigenvectors of J for λ, i. e., such u =

{u(n)}n≥1 ∈ `(N) that

((J − λ)u)(n) = 0, n ≥ 2. (0.2)

By Sol(λ) we denote the linear space of all the generalized eigenvectors of J for
λ, so dim Sol(λ) = 2.

Various forms of asymptotics for two linearly independent generalized eigenvec-
tors have been found through some asymptotic tricks for difference equations, see
e. g.[1, 3, 4, 5, 6, 7, 8, 9, 12, 13, 14, 15]. For many of the described Jacobi operators,
for λ-s from some non-empty open intervals the authors proved the existence of two
linearly independent vectors u+, u− from Sol(λ), having the general form

u±(n) = r(n) exp(±ian) · s±(n), n ∈ N. (0.3)

∗Wydzia l Matematyki Informatyki i Mechaniki Uniwersytet Warszawski ul. Banacha 2, 02-097
Warszawa, Poland; mmoszyns@mimuw.edu.pl

1



In this formula r is the positive explicit modulus, a — the real explicit phase, s±
are the complex implicit terms with some explicit “convergence properties”, for
instance: s±(n) −→ 1 or s±(n) = p±(n)+o(1), with p± being explicitly computable
non-zero periodic sequences. In particular, such situation seems to be typical for
the so-called Jordan box case (or critical case) (— see e. g. [3] for the definition).
In many examples r(n) := n−b with b ≤ 1

2
.

It is proved in [11] that such a form of a base of Sol(λ) guarantees non-existence
of subordinated solutions of (0.2), and consequently, by subordination theory ([2,
10]), this gives the absolute continuity of J on the appropriate interval of R.

According to my knowledge, in the existing literature dealing with asymptotics
of some base vectors u+, u− of Sol(λ) with the general form 0.3 (in the self-adjoint
case), we can find only the explicit phase sequences a being “weakly increasing”,
i.e., (∆a)(n) −→ 0 or a(n) = nα(c + o(1)) with c > 0 and 0 < α < 1., if we
limit ourselves to all λ-s from some non-empty open intervals of R.

Open problem

The problem is to construct such a self-adjoint Jacobi operator (by finding ex-
plicit formulae on its weights {wn}n≥1 and diagonals {qn}n≥1) for which the asymp-
totic formula (0.3) of some base vectors u+, u− of Sol(λ) holds, with the “strongly
increasing” phase sequences a for all λ-s from a non-empty open interval A ⊂ R.
More precisely, for any λ ∈ A we would like (0.3) with the following conditions to
be satisfied:

1. r — positive sequence, a — real sequence

2. (∆a)(n) −→ +∞ or a(n) = nα(c+ o(1)) with c > 0 and α > 1

3. s±(n) = p±(n) + o(1), with p± being explicitly computable non-zero periodic
sequences (e. g., p± ≡ 1, if possible),

where r, a, c, p± can depend on λ ∈ A.
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