Curved Dirichlet waveguides in strong magnetic field

Pavel Exner

Let $\Omega \subset \mathbb{R}^2$ be a strip of constant width 2a built over an infinite C^4 -smooth curve $\Gamma : \mathbb{R} \to \mathbb{R}^2$ which is not a straight line but it is asymptotically straight in a suitable sense; for the purpose of this note it is possible to suppose it is straight outside a compact. Suppose that Ω does not intersect itself and consider the operators $H(B) := (-i\nabla + A)^2$ in $L^2(\Omega)$ with the domain $H_0^1(\Omega) \cap H^2(\Omega)$, where A is a vector potential corresponding to the homogeneous magnetic field of intensity B perpendicular to the plane in which the strip lies.

If the magnetic field is absent, B = 0, the operator is the Dirichlet Laplacian and it is notoriously known that it has a non-void discrete spectrum below inf $\sigma(H(0)) = (\frac{\pi}{2a})^2$ as one can learn in [EŠ89, DE95] and numerous subsequent papers. Exposing such a system to a *local* magnetic field stabilizes the spectrum: the essential spectrum is preserved and the strip must be sufficiently (in terms of the field) bent to produce isolated eigenvalues [EK05].

A homogeneous field is a much stronger perturbation and the question arises what happens with the spectrum under its influence. Even if Ω is straight, the essential spectrum threshold moves up if $B \neq 0$ — see, e.g. [HS08] — and under the asymptotic straightness assumption one naturally expects that $\sigma_{\rm ess}(H(B))$ will not be affected by the curvature. For small values of |B| one can use a suitable gauge [Ex93] in combination with the perturbation theory to see how the non-magnetic bound states change under influence of the field but this tells us nothing about the behaviour beyond the weak-field regime.

Conjecture: $\sigma_{\text{disc}}(H(B)) = \emptyset$ holds for |B| large enough.

For mathematically minded readers I add that if the stated conjecture can be proved to be true, the effect is likely to be robust, i.e. insensitive to the regularity assumptions about Γ as long as the asymptotic straightness will guarantee preservation of the essential spectrum.

References

[DE95] P. Duclos, P. Exner: Curvature-induced bound states in quantum waveguides in two and three dimensions, *Rev. Math. Phys.* 7 (1995), 73-102.

- [EK05] T. Ekholm, H. Kovařík: Stability of the magnetic Schrödinger operator in a waveguide, Comm. Partial Diff. Equations 30 (2005), 539-565.
- [Ex93] P. Exner: A twisted Landau gauge, *Phys. Lett.* A178 (1993), 236-238.
- [EŠ89] P. Exner, P. Šeba: Bound states in curved quantum waveguides, J. Math. Phys. 30 (1989), 2574-2580.
- [HS08] P.D. Hislop, E. Soccorsi: Edge currents for quantum Hall systems, II. Twoedge, bounded and unbounded geometries, Ann. H. Poincaré 9 (2008), 1141-1171.