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Let f(x) = sin(x) and 0 < ε < 2. The singular Sturm-Liouville differential
operator

`[u](x) = ε(fu′)′(x) + u′(x) (1)

with periodic boundary conditions at ±π originated in applications from hydro-
dynamics [1], and it has recently attracted some interest due to various unusual
stability and symmetry properties. The spectrum of ` was examined simultane-
ously in various works by Chugunova, Karabash, Pelinovsky and Pyatkov [4, 5],
and Davies and Weir [6, 7, 8, 9, 10]. Remarkably it was noted that the associ-
ated closed operator, defined on a suitable domain reproducing the singularities
and boundary conditions, has a purely discrete spectrum comprising conjugate
pairs lying on the imaginary axis and accumulating only at ±i∞ and a set of
eigenfunctions which is complete, but does not form a Riesz basis of L2(−π, π).

In [2, 3] it was shown that the spectrum has a similar structure, if we replace
sin(x) by a more general function f , assuming that it is

1. absolutely continuous and 2π-periodic,

2. differentiable except possibly at a finite number of points excluding integer
multiples of π,

3. 1 = f ′(0) 6= 0 exists and f(x) = x+O(x2) near x, and

4. f(x+ π) = −f(x), f(−x) = −f(x) and f(x) > 0 for all x ∈ (0, π).

In [3] it was also shown that the set of eigenfunctions does not form a Riesz
basis of the L2 space. Whether the set of eigenfunctions is also complete in this
general case remains an open question.
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