THE SPECTRUM OF THE HILBERT MATRIX AS AN OPERATOR ON ℓ_p

MANUEL GONZÁLEZ

Given a complex number $\lambda \in \mathbb{C} \setminus \{-1, -2, -3, \ldots\}$, we consider the matrix H_{λ} with coefficients $a_{mn} = (m + n + 1 - \lambda)^{-1}$, $m, n = 0, 1, 2, \ldots$ Note that

$$H_0 = \begin{pmatrix} 1 & 1/2 & 1/3 & \cdots \\ 1/2 & 1/3 & 1/4 & \cdots \\ 1/3 & 1/4 & 1/5 & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

is the classical Hilbert matrix, which defines a selfadjoint operator on ℓ_2 whose spectrum is purely continuous and coincides with $[0, \pi]$.

We say that $\mu \in \mathbb{C}$ is a *latent root* of H_{λ} if there exists a non-null sequence $(x_n)_{n=0}^{\infty}$ such that $\sum_{n=0}^{\infty} a_{mn} x_n$ converges to μx_m for every $m \ge 0$.

It was proved by Rosenblum [3] that for a real $\lambda < 1$, every complex number with positive real part is a *latent root* of H_{λ} . Moreover, he observed that in this case H_{λ} defines a bounded operator on ℓ_p for 2 and $that <math>\pi \sec \pi u$ is an eigenvalue of $H_{\lambda} : \ell_p \to \ell_p$ for $|\mathbb{R}e u| < 1/2 - 1/p$.

Note that $\{\pi \sec \pi u : |\mathbb{R}e u| < 1/2\} = \{\mu : \mathbb{R}e \mu > 0\}$, and that the latent roots of H_{λ} for λ complex have been recently studied in [1].

Problem. Determine the spectrum, the point spectrum and the essential spectrum of H_{λ} as an operator on ℓ_p for 2 .

We refer to [2] for the following related result: The spectrum of the Cesàro matrix C as an operator on ℓ_p $(1 is <math>D_p := \{\mu : |\mu - q/2| \le q/2\}$, where 1/p + 1/q = 1, its essential spectrum is the boundary of D_p , and the point spectrum of the conjugate operator C^* is the interior of D_p .

References

- A. Aleman, A. Montes Rodríguez and A. Sarafoleanu. The eigenfunctions of the Hilbert matrix. Preprint, 2010.
- [2] M. González. The fine spectrum of the Cesàro operator in ℓ_p (1 . Arch. Math. 44 (1985), 355–358.
- [3] M. Rosenblum. On the Hilbert matrix I. Proc. Amer. Math. Soc. 9 (1958) 137–140.

DEPARTAMENTO DE MATEMÁTICAS, FACULTAD DE CIENCIAS, UNIVERSIDAD DE CANTA-BRIA, E-39071 SANTANDER, SPAIN

E-mail address: manuel.gonzalez@unican.es