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1. Complex symmetric operators

This section is a brief introduction to complex symmetric operators, a certain
class of Hilbert space operators which arise in complex analysis, matrix the-
ory, functional analysis, and even quantum mechanics. The basic definitions
and examples are discussed in [8, 10, 11] and a few applications to quantum
systems can be found in [15]. We first introduce the notion of a conjugation:

Definition 1.1. A conjugate-linear operator C on a complex Hilbert space H
is called a conjugation if C2 = I and 〈Cx,Cy〉 = 〈y, x〉 for all x, y in H.

The standard example of a conjugation is pointwise complex conjuga-
tion on a Lebesgue space L2(X,µ). It is easy to see that any conjugation is
unitarily equivalent to the canonical conjugation on a `2-space of the appro-
priate dimension.

Definition 1.2. Let C be a conjugation on H. A bounded linear operator
T : H → H is called C-symmetric if T = CT ∗C. We say that T is a complex
symmetric operator (CSO) if there exists a C such that T is C-symmetric.

We remark that a slightly more technical definition exists if one wishes
to consider unbounded operators [11]. The term complex symmetric comes
from the fact that an operator is a CSO if and only if it has a symmetric
(i.e., self-transpose) matrix representation with respect to some orthonormal
basis [10]. In the above it is important to note that C is conjugate-linear and
thus the study of complex symmetric operators is quite distinct from that of
operators on indefinite inner product spaces.

As a simple example, consider the Volterra integration operator T :
L2[0, 1]→ L2[0, 1] defined by

[Tf ](x) =

∫ x

0

f(y) dy. (1.1)
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It is highly non-normal, being in fact quasinilpotent. However, it is C-symmetric
with respect to the conjugation

[Cf ](x) = f(1− x)

on L2[0, 1]. Now observe that C fixes each element of the orthonormal basis

en = exp[2πin(x− 1
2 )], (n ∈ Z)

of L2[0, 1] and that the matrix for T with respect to this basis is simply
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2. Norms and singular values

Perhaps the most promising development (as far as applications are con-
cerned) in the abstract theory of complex symmetric operators is the notion
of approximate antilinear eigenvalue problems [5]. This can be viewed as a
complex symmetric analogue of the classical Weyl Criterion from the spectral
theory of self-adjoint operators [17].

Theorem 2.1. If T is a bounded C-symmetric operator and λ ∈ C, then |λ|
belongs to the spectrum of |T | =

√
T ∗T if and only if there exists a sequence

of unit vectors xn that satisfy limn→∞ ‖(T − λC)xn‖ = 0. Moreover, |λ| is a
singular value of T if and only if there exists x 6= 0 such that Tx = λCx.

The preceding theorem places in a single framework a number of dis-
parate topics in analysis. For instance, Schmidt vectors and singular numbers
in the theory of Hankel operators [13] and the Fredholm eigenvalues of a pla-
nar domain [2, 18] both arise from such antilinear eigenvalue problems.

Continuing with the example of the Volterra operator (1.1), a straight-
forward application of 2.1 reveals that ‖T‖ = 2

π (see [11] for details). As
another example, a simple application of Theorem 2.1 completely describes
the spectral properties of the modulus |T | =

√
T ∗T of a Foguel operator

T =

(
S∗ H
0 S

)
(2.1)

on l2(N) ⊕ l2(N) [7] (M. Raghupathi recently obtained similar results using
other means [16]). Here H is an infinite Hankel matrix and S is the unilateral
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shift operator on `2(N). Such operators figure prominently in Pisier’s cele-
brated solution to Halmos’ polynomially bounded operator problem [14] (see
also the influential papers [1, 3]).

Up to this point, the applications of Theorem 2.1 have been limited
mostly to the study of function-related operator theory. It would therefore
be of interest to develop this approach further.

Question: Develop numerical methods to compute the singular values of con-
crete complex symmetric operators (e.g., certain differential and integral op-
erators). For instance, using this method could one compute resolvent norms
‖(T − zI)−1‖ for certain classes of operators?

3. Decomposition of complex symmetric operators

The class of complex symmetric operators, which contains many highly non-
normal operators, does not yet have a fully developed spectral theory (be-
yond those basic results which apply to all operators generically). Although
the basic linear algebraic principles governing the eigenstructure of complex
symmetric operators was developed in [6], there is still much to be done.

It has recently been established [12] that every complex symmetric op-
erator on a finite-dimensional space is unitarily equivalent to a direct sum
of

1. Irreducible complex symmetric matrices,

2. Matrices of the form A⊕ At where A is irreducible and not a complex
symmetric operator.1

We use the term irreducible in the operator-theoretic sense. Namely, T ∈
B(H) is called irreducible if T is not unitarily equivalent to a direct sum
A⊕B. In some sense, the preceding result permits one to decompose complex
symmetric operators on finite-dimensional spaces into simpler components.
In a similar vein, we consider the following questions:

Question: What is the infinite-dimensional analogue of the preceding result?

Question: Just as multiplication operators Mz : L2(X,µ)→ L2(X,µ) play a
fundamental role in decomposing normal operators, can one develop a com-
parable model theory for complex symmetric operators?2

Question: Does every bounded complex symmetric operator (on a separa-
ble, infinite-dimensional Hilbert space) have a proper, nontrivial invariant
subspace?

1However, it turns out that the direct sum A⊕At is a complex symmetric operator.
2There is some indication that truncated Toeplitz operators may play a role in this endeavor
[4, 9, 19].
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