Decay law regularity

Let H_{α} be a Hamiltonian on $L^2(\mathbb{R}_+)$ with a δ interaction of strength $\alpha > 0$ at a point a > 0 and Dirichlet condition at the origin, that is, $H_{\alpha}\psi = -\psi''$ with the domain of all $\psi \in W^{2,2}(\mathbb{R}_+ \setminus \{a\})$ satisfying the boundary conditions $\psi(0) = 0$ and

$$\psi(a+) = \psi(a-) =: \psi(a), \quad \psi'(a+) - \psi'(a-) = \alpha \psi(a).$$

Let P be the projection onto $L^2(0, a)$ in $L^2(\mathbb{R}_+)$. Given $\psi_0 \in L^2(\mathbb{R}_+)$ such that $P\psi_0 = \psi_0$, consider the *decay law*, or survival probability at time t > 0,

$$P_{\psi_0}(t) := \|P e^{-iH_{\alpha}t}\psi_0\|^2.$$

A numerical analysis of this and similar models [1] for a particular choice of ψ_0 gives a highly irregular function. A conjecture to be considered is that for $\psi_0(a-) \neq 0$ the function $P_{\psi_0}(\cdot)$ might be nowhere differentiable.

References

 P. Exner, M. Fraas: The decay law can have an irregular character, J. Phys. A: Math. Theor. 19 (2007), 1333-1340.