David Krejcirik's page:
Works citing  
[Phys. Rev. D 86 (2012), 121702(R)]
-
D. Dutta, O. Panella and P. Roy:
Pseudo-Hermitian generalized Dirac oscillators,
Ann. Phys. 331 (2013), 120-126.
-
M. Znojil, J. Wu:
A Generalized Family of Discrete PT-symmetric Square Wells,
Int. J. Theor. Phys. 52 (2013), 2152-2162.
-
C. M. Bender and M. Gianfreda:
Nonuniqueness of the C operator
in PT-symmetric quantum mechanics,
J. Phys. A: Math. Theor. 46 (2013), 275306.
-
M. Znojil:
Solvable model of quantum phase transitions
and the symbolic-manipulation-based study of its multiply
degenerate exceptional points and of their unfolding,
Ann. Phys. 336 (2013), 98-111.
-
F. Bagarello:
From self-adjoint to non-self-adjoint harmonic oscillators:
Physical consequences and mathematical pitfalls,
Phys. Rev. A 88 (2013), 032120.
-
F. Bagarello, A. Fring:
Non-self-adjoint model of a two-dimensional noncommutative space
with an unbound metric,
Phys. Rev. A 88 (2013), 042119.
-
J.-P. Antoine and C. Trapani:
Some remarks on quasi-Hermitian operators,
J. Math. Phys. 55 (2014), 013503.
-
D. C. Brody:
Biorthogonal quantum mechanics,
J. Phys. A: Math. Theor. 47 (2014), 035305.
-
F. Bagarello, A. Inoue and C. Trapani:
Non-self-adjoint hamiltonians defined by Riesz bases,
J. Math. Phys. 55 (2014), 033501.
-
M. Hasan, A. Ghatak and B. P. Mandal:
Critical coupling and coherent perfect absorption for ranges of energies
due to a complex gain and loss symmetric system,
Ann. Phys. 344 (2014), 17-28.
-
G. Levai, F. Ruzicka and M. Znojil:
Three Solvable Matrix Models of a Quantum Catastrophe,
Int. J. Theor. Phys. 53 (2014), 2875-2890.
-
I. Giordanelli and G. M. Graf:
The Real Spectrum of the Imaginary Cubic Oscillator:
An Expository Proof,
Ann. H. Poincare 16 (2015), 99-112.
-
M. Znojil:
Quantum control and the challenge of non-Hermitian model-building,
International conference on quantum control, exact or perturbative,
linear or nonlinear to celebrate 50 years of the scientific career of
professor Bogdan Mielnik,
Edited by: N. Breton, D. Fernandez and P. Kielanowski;
Book Series: Journal of Physics Conference Series,
624 (2015), 012011.
-
B. Rath, P. Mallick and P. K. Samal:
A Study of Spectral Instability in V(x) = ix(3)
Through Internal Perturbation: Breakdown of Unbroken PT Symmetry,
African Rev. Phys. 10 (2015), 0007.
-
E.-M. Graefe, H. J. Korsch, A. Rush, R. Schubert:
Classical and quantum dynamics in the (non-Hermitian)
Swanson oscillator,
J. Phys. A: Math. Theor. 48 (2015), 055301.
-
Y. Almog and B. Helffer:
On the Spectrum of Non-Selfadjoint Schrodinger Operators with Compact Resolvent,
Commun. Part. Diff. Eq. 40 (2015), 1441-1466.
-
R. Novak:
On the Pseudospectrum of the Harmonic Oscillator
with Imaginary Cubic Potential,
Int. J. Theor. Phys. 54 (2015), 4142-4153.
-
H. F. Jones:
Singular Mapping for a PT-Symmetric Sinusoidal Optical Lattice
at the Symmetry-Breaking Threshold,
Int. J. Theor. Phys. 54 (2015), 3986-3990.
-
G. Marinello and M. P. Pato:
A pseudo-Hermitian beta-Hermite family of matrices,
Physica A 444 (2016), 1049-1061.
-
G. Bellomonte:
Bessel Sequences, Riesz-Like Bases and Operators
in Triplets of Hilbert Spaces,
Edited by: Bagarello, F; Passante, R; Trapani, C
Conference: 15th International Workshop on Pseudo-Hermitian Hamiltonians in Quantum Physics (PHHQP) Location: Palermo, ITALY Date: MAY 18-23, 2015.
Book Series: Springer Proceedings in Physics 184 (2016), 167-183.
-
J.-P. Antoine and C. Trapani:
Operator (Quasi-)Similarity, Quasi-Hermitian Operators and All that,
Edited by: Bagarello, F; Passante, R; Trapani, C
Conference: 15th International Workshop on Pseudo-Hermitian Hamiltonians in Quantum Physics (PHHQP) Location: Palermo, ITALY Date: MAY 18-23, 2015.
Book Series: Springer Proceedings in Physics 184 (2016), 46-65.
-
G. Bellomonte and C. Trapani:
Riesz-Like Bases in Rigged Hilbert Spaces,
Z. Anal. Anwend. 35 (2016), 243-265.
-
M. Znojil:
Parity-Time Symmetry and the Toy Models of Gain-Loss Dynamics
near the Real Kato's Exceptional Points,
Symmetry-Basel 8 (2016), 52.
-
H. Inoue:
General theory of regular biorthogonal pairs and its physical operators,
J. Math. Phys. 57 (2016), 083511.
-
H. Inoue:
Semi-regular biorthogonal pairs and generalized Riesz bases,
J. Math. Phys. 57 (2016), 113502.
-
A. M. Savchuk and A. A. Shkalikov:
Spectral Properties of the Complex Airy Operator on the Half-Line,
Funct. Anal. Appl. 51 (2017), 66-79.
-
M. Znojil, I. Semoradova, F. Ruzicka, H. Moulla and I. Leghrib:
Problem of the coexistence of several non-Hermitian observables
in PT-symmetric quantum mechanics,
Phys. Rev. A 95 (2017), 042122.
-
M. Znojil:
Bound states emerging from below the continuum
in a solvable PT-symmetric discrete Schrodinger equation,
Phys. Rev. A 96 (2017), 012127.
-
A. Fring and T. Frith:
Mending the broken PT-regime via an explicit time-dependent Dyson map,
Phys. Lett. A 381 (2017), 2318-2323.
-
P. W. Dondl, P. Dorey and F. Roesler:
A Bound on the Pseudospectrum for a Class
of Non-normal Schrodinger Operators,
Applied Mathematics Research Express 2 (2017) 271-296.
-
F. Bagarello, F. Gargano, S. Spagnolo and S. Triolo:
Coordinate representation for non-Hermitian position and momentum operators,
Proceedings of the Royal Society A: Mathematical,
Physical and Engineering Sciences 473 (2017), 20170434.
-
M. Znojil:
Hermitian-Non-Hermitian Interfaces in Quantum Theory,
Adv. High Energy Phys. (2018) 7906536.
-
P. D. Mannheim:
Appropriate inner product for PT-symmetric Hamiltonians,
Phys. Rev. D 473 (2018) 045001.
-
M. Znojil:
Admissible perturbations and false instabilities
in PT-symmetric quantum systems,
Phys. Rev. A 97 (2018) 032114.
-
N. Bebiano and J. da Providencia:
Implications of losing Hermiticity in quantum mechanics,
Linear Algebra Appl. 542 (2018) 54-65.
-
D. Borisov and M. Znojil:
Two patterns of PT-symmetry breakdown
in a non-numerical six-state simulation,
Ann. Phys. 394 (2018) 40-49.
-
P. D. Mannheim:
Antilinearity rather than Hermiticity
as a guiding principle for quantum theory,
J. Phys. A: Math. Theor. 51 (2018) 315302.
-
A. Mostafazadeh:
Energy observable for a quantum system with a dynamical Hilbert space
and a global geometric extension of quantum theory,
Phys. Rev. D 98 (2018) 046022.
-
N. Bebiano and J. da Providencia:
Non-self-adjoint operators with real spectra
and extensions of quantum mechanics,
J. Math. Phys. 60 (2019) 012104.
-
B. Bagchi and A. Fring:
Quantum, noncommutative and MOND corrections
to the entropic law of gravitation,
Int. J. Mod. Phys. B 33 (2019) 1950018.
-
A. Contreras-Astorga and V. Jakubsky:
Photonic systems with two-dimensional landscapes
of complex refractive index via time-dependent supersymmetry
,
Phys. Rev. A 99 (2019) 053812.
-
A. Fring and T. Frith:
Eternal life of entropy in non-Hermitian quantum systems,
Phys. Rev. A 100 (2019) 010102.
-
F. Bagarello, F. Gargano and F. Roccati:
Tridiagonality, supersymmetry and non self-adjoint Hamiltonians,
J. Phys. A: Math. Theor. 52 (2019) 355203.
-
N. Bebiano, J. da Providencia and J. P. da Providencia:
A quantum system with a non-self-adjoint 2D-harmonic oscillator,
Physica Scripta 94 (2019) 095205.
-
M. Znojil:
Theory of Response to Perturbations in Non-Hermitian Systems
Using Five-Hilbert-Space Reformulation of Unitary Quantum Mechanics,
Entropy 22 (2020), 80.
-
A. Kamuda and S. Kuzel:
Towards Generalized Riesz Systems Theory,
Complex Anal. Oper. Theory 14 (2020), 25.
-
F. Bagarello and S. Kuzel:
Generalized Riesz systems and orthonormal sequences in Krein spaces,
J. Phys. A: Math. Theor. 53 (2020) 085202.
-
B. P. Mandal, B. K. Mourya and A. K. Singh:
QES solutions of a two-dimensional system with quadratic nonlinearities,
Eur. Phys. J. Plus 135 (2020) 327.
-
M. Znojil:
Supersymmetry and Exceptional Points,
Symmetry-Basel 12 (2020) 892.
Last modified: 22 September 2020