David Krejcirik's page:

Works citing   [Phys. Rev. D 86 (2012), 121702(R)]

  1. D. Dutta, O. Panella and P. Roy:
    Pseudo-Hermitian generalized Dirac oscillators,
    Ann. Phys. 331 (2013), 120-126.

  2. M. Znojil, J. Wu:
    A Generalized Family of Discrete PT-symmetric Square Wells,
    Int. J. Theor. Phys. 52 (2013), 2152-2162.

  3. C. M. Bender and M. Gianfreda:
    Nonuniqueness of the C operator in PT-symmetric quantum mechanics,
    J. Phys. A: Math. Theor. 46 (2013), 275306.

  4. M. Znojil:
    Solvable model of quantum phase transitions and the symbolic-manipulation-based study of its multiply degenerate exceptional points and of their unfolding,
    Ann. Phys. 336 (2013), 98-111.

  5. F. Bagarello:
    From self-adjoint to non-self-adjoint harmonic oscillators: Physical consequences and mathematical pitfalls,
    Phys. Rev. A 88 (2013), 032120.

  6. F. Bagarello, A. Fring:
    Non-self-adjoint model of a two-dimensional noncommutative space with an unbound metric,
    Phys. Rev. A 88 (2013), 042119.

  7. J.-P. Antoine and C. Trapani:
    Some remarks on quasi-Hermitian operators,
    J. Math. Phys. 55 (2014), 013503.

  8. D. C. Brody:
    Biorthogonal quantum mechanics,
    J. Phys. A: Math. Theor. 47 (2014), 035305.

  9. F. Bagarello, A. Inoue and C. Trapani:
    Non-self-adjoint hamiltonians defined by Riesz bases,
    J. Math. Phys. 55 (2014), 033501.

  10. M. Hasan, A. Ghatak and B. P. Mandal:
    Critical coupling and coherent perfect absorption for ranges of energies due to a complex gain and loss symmetric system,
    Ann. Phys. 344 (2014), 17-28.

  11. G. Levai, F. Ruzicka and M. Znojil:
    Three Solvable Matrix Models of a Quantum Catastrophe,
    Int. J. Theor. Phys. 53 (2014), 2875-2890.

  12. I. Giordanelli and G. M. Graf:
    The Real Spectrum of the Imaginary Cubic Oscillator: An Expository Proof,
    Ann. H. Poincare 16 (2015), 99-112.

  13. M. Znojil:
    Quantum control and the challenge of non-Hermitian model-building,
    International conference on quantum control, exact or perturbative, linear or nonlinear to celebrate 50 years of the scientific career of professor Bogdan Mielnik, Edited by: N. Breton, D. Fernandez and P. Kielanowski; Book Series: Journal of Physics Conference Series, 624 (2015), 012011.

  14. B. Rath, P. Mallick and P. K. Samal:
    A Study of Spectral Instability in V(x) = ix(3) Through Internal Perturbation: Breakdown of Unbroken PT Symmetry,
    African Rev. Phys. 10 (2015), 0007.

  15. E.-M. Graefe, H. J. Korsch, A. Rush, R. Schubert:
    Classical and quantum dynamics in the (non-Hermitian) Swanson oscillator,
    J. Phys. A: Math. Theor. 48 (2015), 055301.

  16. Y. Almog and B. Helffer:
    On the Spectrum of Non-Selfadjoint Schrodinger Operators with Compact Resolvent,
    Commun. Part. Diff. Eq. 40 (2015), 1441-1466.

  17. R. Novak:
    On the Pseudospectrum of the Harmonic Oscillator with Imaginary Cubic Potential,
    Int. J. Theor. Phys. 54 (2015), 4142-4153.

  18. H. F. Jones:
    Singular Mapping for a PT-Symmetric Sinusoidal Optical Lattice at the Symmetry-Breaking Threshold,
    Int. J. Theor. Phys. 54 (2015), 3986-3990.

  19. G. Marinello and M. P. Pato:
    A pseudo-Hermitian beta-Hermite family of matrices,
    Physica A 444 (2016), 1049-1061.

  20. G. Bellomonte:
    Bessel Sequences, Riesz-Like Bases and Operators in Triplets of Hilbert Spaces,
    Edited by: Bagarello, F; Passante, R; Trapani, C Conference: 15th International Workshop on Pseudo-Hermitian Hamiltonians in Quantum Physics (PHHQP) Location: Palermo, ITALY Date: MAY 18-23, 2015.
    Book Series: Springer Proceedings in Physics 184 (2016), 167-183.

  21. J.-P. Antoine and C. Trapani:
    Operator (Quasi-)Similarity, Quasi-Hermitian Operators and All that,
    Edited by: Bagarello, F; Passante, R; Trapani, C Conference: 15th International Workshop on Pseudo-Hermitian Hamiltonians in Quantum Physics (PHHQP) Location: Palermo, ITALY Date: MAY 18-23, 2015.
    Book Series: Springer Proceedings in Physics 184 (2016), 46-65.

  22. G. Bellomonte and C. Trapani:
    Riesz-Like Bases in Rigged Hilbert Spaces,
    Z. Anal. Anwend. 35 (2016), 243-265.

  23. M. Znojil:
    Parity-Time Symmetry and the Toy Models of Gain-Loss Dynamics near the Real Kato's Exceptional Points,
    Symmetry-Basel 8 (2016), 52.

  24. H. Inoue:
    General theory of regular biorthogonal pairs and its physical operators,
    J. Math. Phys. 57 (2016), 083511.

  25. H. Inoue:
    Semi-regular biorthogonal pairs and generalized Riesz bases,
    J. Math. Phys. 57 (2016), 113502.

  26. A. M. Savchuk and A. A. Shkalikov:
    Spectral Properties of the Complex Airy Operator on the Half-Line,
    Funct. Anal. Appl. 51 (2017), 66-79.

  27. M. Znojil, I. Semoradova, F. Ruzicka, H. Moulla and I. Leghrib:
    Problem of the coexistence of several non-Hermitian observables in PT-symmetric quantum mechanics,
    Phys. Rev. A 95 (2017), 042122.

  28. M. Znojil:
    Bound states emerging from below the continuum in a solvable PT-symmetric discrete Schrodinger equation,
    Phys. Rev. A 96 (2017), 012127.

  29. A. Fring and T. Frith:
    Mending the broken PT-regime via an explicit time-dependent Dyson map,
    Phys. Lett. A 381 (2017), 2318-2323.

  30. P. W. Dondl, P. Dorey and F. Roesler:
    A Bound on the Pseudospectrum for a Class of Non-normal Schrodinger Operators,
    Applied Mathematics Research Express 2 (2017) 271-296.

  31. F. Bagarello, F. Gargano, S. Spagnolo and S. Triolo:
    Coordinate representation for non-Hermitian position and momentum operators,
    Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 473 (2017), 20170434.

  32. M. Znojil:
    Hermitian-Non-Hermitian Interfaces in Quantum Theory,
    Adv. High Energy Phys. (2018) 7906536.

  33. P. D. Mannheim:
    Appropriate inner product for PT-symmetric Hamiltonians,
    Phys. Rev. D 473 (2018) 045001.

  34. M. Znojil:
    Admissible perturbations and false instabilities in PT-symmetric quantum systems,
    Phys. Rev. A 97 (2018) 032114.

  35. N. Bebiano and J. da Providencia:
    Implications of losing Hermiticity in quantum mechanics,
    Linear Algebra Appl. 542 (2018) 54-65.

  36. D. Borisov and M. Znojil:
    Two patterns of PT-symmetry breakdown in a non-numerical six-state simulation,
    Ann. Phys. 394 (2018) 40-49.

  37. P. D. Mannheim:
    Antilinearity rather than Hermiticity as a guiding principle for quantum theory,
    J. Phys. A: Math. Theor. 51 (2018) 315302.

  38. A. Mostafazadeh:
    Energy observable for a quantum system with a dynamical Hilbert space and a global geometric extension of quantum theory,
    Phys. Rev. D 98 (2018) 046022.

  39. N. Bebiano and J. da Providencia:
    Non-self-adjoint operators with real spectra and extensions of quantum mechanics,
    J. Math. Phys. 60 (2019) 012104.

  40. B. Bagchi and A. Fring:
    Quantum, noncommutative and MOND corrections to the entropic law of gravitation,
    Int. J. Mod. Phys. B 33 (2019) 1950018.

  41. A. Contreras-Astorga and V. Jakubsky:
    Photonic systems with two-dimensional landscapes of complex refractive index via time-dependent supersymmetry ,
    Phys. Rev. A 99 (2019) 053812.

  42. A. Fring and T. Frith:
    Eternal life of entropy in non-Hermitian quantum systems,
    Phys. Rev. A 100 (2019) 010102.

  43. F. Bagarello, F. Gargano and F. Roccati:
    Tridiagonality, supersymmetry and non self-adjoint Hamiltonians,
    J. Phys. A: Math. Theor. 52 (2019) 355203.

  44. N. Bebiano, J. da Providencia and J. P. da Providencia:
    A quantum system with a non-self-adjoint 2D-harmonic oscillator,
    Physica Scripta 94 (2019) 095205.

  45. M. Znojil:
    Theory of Response to Perturbations in Non-Hermitian Systems Using Five-Hilbert-Space Reformulation of Unitary Quantum Mechanics,
    Entropy 22 (2020), 80.

  46. A. Kamuda and S. Kuzel:
    Towards Generalized Riesz Systems Theory,
    Complex Anal. Oper. Theory 14 (2020), 25.

  47. F. Bagarello and S. Kuzel:
    Generalized Riesz systems and orthonormal sequences in Krein spaces,
    J. Phys. A: Math. Theor. 53 (2020) 085202.

  48. B. P. Mandal, B. K. Mourya and A. K. Singh:
    QES solutions of a two-dimensional system with quadratic nonlinearities,
    Eur. Phys. J. Plus 135 (2020) 327.

  49. M. Znojil:
    Supersymmetry and Exceptional Points,
    Symmetry-Basel 12 (2020) 892.

Last modified: 22 September 2020