David Krejcirik's page:

Works citing   [Rev. Math. Phys. 24 (2012), 1250018]

  1. G. Bouchitte, L. Mascarenhas and L. Trabucho:
    Thin waveguides with Robin boundary conditions,
    J. Math. Phys. 53 (2012), Art. No. 123517.

  2. J. Stockhofe and P. Schmelcher:
    Nonadiabatic couplings and gauge-theoretical structure of curved quantum waveguides,
    Phys. Rev. A 89 (2014), 033630.

  3. A. Hussein:
    Sign-indefinite second-order differential operators on finite metric graphs,
    Rev. Math. Phys. 26 (2014), 1430003.

  4. C. Kreisbeck and L. Mascarenhas:
    Asymptotic spectral analysis in semiconductor nanowire heterostructures,
    Appl. Anal. 94 (2015), 1153-1191.

  5. B. T. Kaynak and O. T. Turgut:
    Infinitely many singular interactions on noncompact manifolds,
    Ann. Phys. 356 (2015), 426-437.

  6. S. Haag, J. Lampart and S. Teufel:
    Generalised Quantum Waveguides,
    Ann. H. Poincare 16 (2015), 2535-2568.

  7. F. Mehats and N. Raymond:
    Strong Confinement Limit for the Nonlinear Schrodinger Equation Constrained on a Curve,
    Ann. H. Poincare 18 (2017), 281-306.

  8. C. R. De Oliveira and A. A. Verri:
    Mild singular potentials as effective Laplacians in narrow strips,
    Math. Scand. 120 (2017), 145-160.

  9. S. Boegli, P. Siegl and Ch. Tretter:
    Approximations of spectra of Schrodinger operators with complex potentials on R^d,
    Comm. Partial Differential Equations 42 (2017), 1001-1041.

  10. C. R. De Oliveira, L. Hartmann and A. A. Verri:
    Effective Hamiltonians in surfaces of thin quantum waveguides,
    J. Math. Phys. 60 (2019), 022101.

  11. A. A. Verri:
    Dirichlet Laplacian in a thin twisted strip,
    Int. J. Math. 30 (2019) 1950006.

  12. V. Bruneau, P. Miranda, D. Parra and N. Popoff:
    Eigenvalue and Resonance Asymptotics in Perturbed Periodically Twisted Tubes: Twisting Versus Bending,
    Ann. H. Poincare 21 (2020) 377-403.

  13. C. de Oliveira and A. A. Verri:
    On the Neumann Laplacian in nonuniformly collapsing strips,
    Commun. Contemp. Math. 22 (2020) 1950021.

  14. C. R. Mamani and A. A. Verri:
    A note on the spectrum of the Neumann Laplacian in thin periodic waveguides,
    Colloq. Math 162 (2020) 211-234.

Last modified: 22 September 2020