David Krejcirik's page:
Works citing  
[Complex Anal. Oper. Theory 8 (2014), 255-281]
-
M. Znojil:
Quantum star-graph analogues of PT-symmetric square wells,
Can. J. Phys. 90 (2012), 1287-1293.
-
G. Levai, F. Ruzicka and M. Znojil:
Three Solvable Matrix Models of a Quantum Catastrophe,
Int. J. Theor. Phys. 53 (2014), 2875-2890.
-
S. R. Garcia, E. Prodan and M. Putinar:
Mathematical and physical aspects of complex symmetric operators,
J. Phys. A: Math. Theor. 47 (2014), 353001.
-
E. Ergun:
On the Metric Operator for a Nonsolvable Non-Hermitian Model,
Rep. Math. Phys. 75 (2015), 403-416.
-
M. Znojil:
Quantum star-graph analogues of PT-symmetric square wells:
Part II, spectra,
Can. J. Phys. 93 (2015), 765-768.
-
M. Znojil:
Solvable quantum lattices
with nonlocal non-Hermitian endpoint interactions,
Ann. Phys. 361 (2015), 226-246.
-
F. Ruzicka:
Hilbert Space Inner Products
for PJ-symmetric Su-Schrieffer-Heeger Models,
Int. J. Theor. Phys. 54 (2015), 4154-4163.
-
D. I. Borisov and M. Znojil:
Mathematical and Physical Meaning of the Crossings of Energy Levels
in PT-Symmetric Systems,
Edited by: Bagarello, F; Passante, R; Trapani, C
Conference: 15th International Workshop on Pseudo-Hermitian Hamiltonians in Quantum Physics (PHHQP) Location: Palermo, ITALY Date: MAY 18-23, 2015.
Book Series: Springer Proceedings in Physics 184 (2016), 201-217.
-
F. Ruzicka:
Quasi-Hermitian Lattices with Imaginary Zero-Range Interactions,
Edited by: Bagarello, F; Passante, R; Trapani, C
Conference: 15th International Workshop on Pseudo-Hermitian Hamiltonians in Quantum Physics (PHHQP) Location: Palermo, ITALY Date: MAY 18-23, 2015.
Book Series: Springer Proceedings in Physics 184 (2016), 371-381.
-
M. Znojil:
Admissible perturbations and false instabilities
in PT-symmetric quantum systems,
Phys. Rev. A 97 (2018) 032114.
-
F. Thompson, K. Brown, H. Mathur and K. Mckee:
Contact interactions and Kronig-Penney models
in Hermitian and PT symmetric quantum mechanics,
J. Phys. A: Math. Theor. 51 (2018) 495204.
-
I. Nakic and K. Veselic:
Perturbation of eigenvalues of the Klein-Gordon operators,
Rev. Mat. Complut. 33 (2020) 557-581.
Last modified: 27 May 2020