David Krejcirik's page:

Works citing   [Complex Anal. Oper. Theory 8 (2014), 255-281]

  1. M. Znojil:
    Quantum star-graph analogues of PT-symmetric square wells,
    Can. J. Phys. 90 (2012), 1287-1293.

  2. G. Levai, F. Ruzicka and M. Znojil:
    Three Solvable Matrix Models of a Quantum Catastrophe,
    Int. J. Theor. Phys. 53 (2014), 2875-2890.

  3. S. R. Garcia, E. Prodan and M. Putinar:
    Mathematical and physical aspects of complex symmetric operators,
    J. Phys. A: Math. Theor. 47 (2014), 353001.

  4. E. Ergun:
    On the Metric Operator for a Nonsolvable Non-Hermitian Model,
    Rep. Math. Phys. 75 (2015), 403-416.

  5. M. Znojil:
    Quantum star-graph analogues of PT-symmetric square wells: Part II, spectra,
    Can. J. Phys. 93 (2015), 765-768.

  6. M. Znojil:
    Solvable quantum lattices with nonlocal non-Hermitian endpoint interactions,
    Ann. Phys. 361 (2015), 226-246.

  7. F. Ruzicka:
    Hilbert Space Inner Products for PJ-symmetric Su-Schrieffer-Heeger Models,
    Int. J. Theor. Phys. 54 (2015), 4154-4163.

  8. D. I. Borisov and M. Znojil:
    Mathematical and Physical Meaning of the Crossings of Energy Levels in PT-Symmetric Systems,
    Edited by: Bagarello, F; Passante, R; Trapani, C Conference: 15th International Workshop on Pseudo-Hermitian Hamiltonians in Quantum Physics (PHHQP) Location: Palermo, ITALY Date: MAY 18-23, 2015.
    Book Series: Springer Proceedings in Physics 184 (2016), 201-217.

  9. F. Ruzicka:
    Quasi-Hermitian Lattices with Imaginary Zero-Range Interactions,
    Edited by: Bagarello, F; Passante, R; Trapani, C Conference: 15th International Workshop on Pseudo-Hermitian Hamiltonians in Quantum Physics (PHHQP) Location: Palermo, ITALY Date: MAY 18-23, 2015.
    Book Series: Springer Proceedings in Physics 184 (2016), 371-381.

  10. M. Znojil:
    Admissible perturbations and false instabilities in PT-symmetric quantum systems,
    Phys. Rev. A 97 (2018) 032114.

  11. F. Thompson, K. Brown, H. Mathur and K. Mckee:
    Contact interactions and Kronig-Penney models in Hermitian and PT symmetric quantum mechanics,
    J. Phys. A: Math. Theor. 51 (2018) 495204.

  12. I. Nakic and K. Veselic:
    Perturbation of eigenvalues of the Klein-Gordon operators,
    Rev. Mat. Complut. 33 (2020) 557-581.

Last modified: 27 May 2020