David Krejcirik's page:

Works citing   [J. Math. Phys. 56 (2015), 103513]

  1. A. M. Savchuk and A. A. Shkalikov:
    Spectral Properties of the Complex Airy Operator on the Half-Line,
    Funct. Anal. Appl. 51 (2017), 66-79.

  2. F. Bagarello and G. Bellomonte:
    Hamiltonians defined by biorthogonal sets,
    J. Phys. A: Math. Theor. 50 (2017), 145203.

  3. Y. Auregan and V. Pagneux:
    PT-Symmetric Scattering in Flow Duct Acoustics,
    Phys. Rev. Lett. 118 (2017), 174301.

  4. M. Znojil:
    Bound states emerging from below the continuum in a solvable PT-symmetric discrete Schrodinger equation,
    Phys. Rev. A 96 (2017), 012127.

  5. A. Fring and T. Frith:
    Mending the broken PT-regime via an explicit time-dependent Dyson map,
    Phys. Lett. A 381 (2017), 2318-2323.

  6. P. D. Mannheim:
    Appropriate inner product for PT-symmetric Hamiltonians,
    Phys. Rev. D 473 (2018) 045001.

  7. M. Znojil:
    Admissible perturbations and false instabilities in PT-symmetric quantum systems,
    Phys. Rev. A 97 (2018) 032114.

  8. N. Bebiano and J. da Providencia:
    Implications of losing Hermiticity in quantum mechanics,
    Linear Algebra Appl. 542 (2018) 54-65.

  9. C. Lasser, R. Schubert and S. Troppmann:
    Non-Hermitian propagation of Hagedorn wavepackets,
    J. Math. Phys. 59 (2018) 082102.

  10. P. D. Mannheim:
    Antilinearity rather than Hermiticity as a guiding principle for quantum theory,
    J. Phys. A: Math. Theor. 51 (2018) 315302.

  11. M. Znojil:
    Complex symmetric Hamiltonians and exceptional points of order four and five,
    Phys. Rev. A 98 (2018) 032109.

  12. N. Bebiano and J. da Providencia:
    Non-self-adjoint operators with real spectra and extensions of quantum mechanics,
    J. Math. Phys. 60 (2019) 012104.

  13. R. Ramirez and M. Reboiro:
    Dynamics of finite dimensional non-hermitian systems with indefinite metric,
    J. Math. Phys. 60 (2019) 012106.

  14. N. Korneev, J. A. Catana Castellanos and V. A. Vysloukh:
    Multisoliton spectrum breaking due to small harmonic perturbations,
    OPTIK 179 (2019) 560-565.

  15. B. Bagchi and A. Fring:
    Quantum, noncommutative and MOND corrections to the entropic law of gravitation,
    Int. J. Mod. Phys. B 33 (2019) 1950018.

  16. M. J. Colbrook, B. Roman and A. C. Hansen:
    How to Compute Spectra with Error Control,
    Phys. Rev. Lett. 122 (2019) 250201.

  17. I. Arraut, A. Au, A. C. B. Tse and C. Segovia:
    The connection between multiple prices of an Option at a given time with single prices defined at different times: The concept of weak-value in quantum finance,
    Physica A 526 (2019) 121028.

  18. F. Bagarello, F. Gargano and F. Roccati:
    Tridiagonality, supersymmetry and non self-adjoint Hamiltonians,
    J. Phys. A: Math. Theor. 52 (2019) 355203.

  19. S. Dey and V. Hussin:
    Squeezed Atom Laser for Bose-Einstein Condensate with Minimal Length,
    Int. J. Theor. Phys. 58 (2019) 3138-3148.

  20. M. Znojil:
    Unitarity corridors to exceptional points,
    Phys. Rev. A100 (2019) 032124.

  21. N. Korneev, J. A. Catana Castellanos and V. A. Vysloukh:
    The relation of Zakharov-Shabat scattering problem to Schrodinger equation with complex potential and approximations for soliton parameters,
    Rev. Mex. de Fis 65 (2019) 634-638.

  22. M. Znojil:
    Theory of Response to Perturbations in Non-Hermitian Systems Using Five-Hilbert-Space Reformulation of Unitary Quantum Mechanics,
    Entropy 22 (2020), 80.

  23. A. Kamuda and S. Kuzel:
    Towards Generalized Riesz Systems Theory,
    Complex Anal. Oper. Theory 14 (2020), 25.

  24. D. Borisov and G. Cardone:
    Spectra of operator pencils with small PT-symmetric periodic perturbation,
    ESAIM: Control, Optimisation and Calculus of Variations 26 (2020) UNSP 21.

  25. M. J. Colbrook:
    Pseudoergodic operators and periodic boundary conditions,
    Math. Comput. 89 (2020) 737-766.

  26. M. Znojil:
    Passage through exceptional point: case study,
    Proc. Royal Soc. A - Math. Phy. Eng. Sci. 476 (2020) 20190831.

  27. Y. X. Liu, X. P. Jiang, J. P. Cao and S. Chen:
    Non-Hermitian mobility edges in one-dimensional quasicrystals with parity-time symmetry,
    Phys. Rev. B 101 (2020) 174205.

  28. M. Znojil:
    Supersymmetry and Exceptional Points,
    Symmetry-Basel 12 (2020) 892.

  29. M. Znojil and D. I. Borisov:
    Anomalous mechanisms of the loss of observability in non-Hermitian quantum models,
    Nucl. Phys. B 957 (2020) 115064.

Last modified: 22 september 2020