David Krejcirik's page:
Works citing  
[Publ. RIMS 41 (2005), pp. 757-791]
-
O. Olendski and L. Mikhailovska:
Curved quantum waveguides in uniform magnetic fields,
Phys. Rev. B 72, 23, (Dec 2005), art. no. 235314.
-
E. R. Johnson, M. Levitin and L. Parnovski:
Existence of eigenvalues of a linear operator pencil
in a curved waveguide
- Localized shelf waves on a curved coast,
SIAM J. Math. Anal. 37 (2006), no. 5, 1465-1481.
-
S. Kondej and I. Veselic:
Spectral gap of segments of periodic waveguides,
Lett. Math. Phys.79 (Jan 2007), no. 1, 95-98.
-
C. Lin and Z. Lu:
Existence of bound states for layers
built over hypersurfaces in $R^{n+1}$,
J. Funct. Anal. 244 (2007), 1-25.
-
O. Olendski and L. Mikhailovska:
A straight quantum wave guide with mixed
Dirichlet and Neumann boundary conditions in uniform magnetic fields,
J. Phys. A: Math. Theor. 40 (2007), 4609-4633.
-
A. B. Mikhailova, B. S. Pavlov and L. V. Prokhorov:
Intermediate Hamiltonian via Glazman's splitting
and analytic perturbation for meromorphic matrix-functions,
Math. Nachr. 280 (2007), 1376-1416.
-
J. Postnova and R. V. Craster:
Trapped modes in elastic plates,
ocean and quantum waveguides,
Wave Motion 45 (2008), 565-579.
-
F. Lledo and O. Post:
Existence of spectral gaps, covering manifolds
and residually finite groups,
Rev. Math. Phys. 20 (2008), 199-231.
-
O. Olendski and L. Mikhailovska:
Analytical and numerical study of a curved planar waveguide
with combined Dirichlet and Neumann boundary conditions
in a uniform magnetic field,
Phys. Rev. B 77 (2008), Art. No. 174405.
-
M. Levitin and M. Marletta:
A simple method of calculating eigenvalues and resonances
in domains with infinite regular ends,
Proc. Roy. Soc. Edinburgh Sect. A 138 (2008), 1043-1065.
M. D. Malykh:
On the emptiness criteria for the discrete spectrum
of the Dirichlet problem for the equation Delta nu plus lambda nu=0,
Comp. Math. Math. Phys. 49 (2009), 279-283.
H. Najar, S. Ben Hariz and M. Ben Salah:
On the Discrete Spectrum of a Spatial Quantum Waveguide
with a Disc Window,
Math. Phys. Anal. Geom. 13 (2010), 19-28.
-
O. Olendski and L. Mikhailovska:
Theory of a curved planar waveguide with Robin boundary conditions,
Phys. Rev. E 81 (2010), Art. No. 036606.
H. Najar and O. Olendski:
Spectral and localization properties of the Dirichlet wave guide
with two concentric Neumann discs,
J. Phys. A: Math. Theor. 44 (2011), Art. No. 305304.
-
D. Borisov and G. Cardone:
Planar waveguide with "twisted" boundary conditions:
Discrete spectrum,
J. Math. Phys. 52, 12, (dec 2011), art. no. 123513.
-
G. Kaoullas and E. R. Johnson:
Isobath variation and trapping of continental shelf waves,
J. Fluid Mech. 700 (2012), 283-303.
-
N. Charalambous and Z. Lu:
On the spectrum of the Laplacian,
Math. Ann. 359 (2014), 211-238.
-
P. Freitas and P. Siegl:
Spectra of graphene nanoribbons with armchair
and zigzag boundary conditions,
Rev. Math. Phys. 26 (2014), 1450018.
-
N. Raymond:
Breaking a magnetic zero locus: Asymptotic analysis,
Math. Mod. Meth. Appl. S. 24 (2014), 2785-2817.
-
V. Bonnaille-Noel and N. Raymond:
Breaking a magnetic zero locus:
model operators and numerical approach,
Z. Angew. Math. Phys. 95 (2015), 120-139.
-
M. Bures and P. Siegl:
Hydrogen atom in space with a compactified extra dimension and potential defined by Gauss' law,
Ann. Phys. 354 (2015), 316-327.
-
G. P. Leonardi:
An Overview on the Cheeger Problem,
Edited by: Pratelli, A; Leugering, G
Conference: workshop on Trends in shape optimization Location:
Erlangen, GERMANY Date: 2013.
Book Series: International Series of Numerical Mathematics
166 (2015), 117-139.
-
H. Najar and M. Raissi:
A quantum waveguide with Aharonov-Bohm magnetic field,
Math. Meth. Appl. Sci. 39 (2016), 92-103.
-
S. Jimbo and K. Kurata:
Asymptotic Behavior of Eigenvalues of the Laplacian
on a Thin Domain under the Mixed Boundary Condition,
Indiana Univ. Math. J. 65 (2016), 867-898.
-
G. P. Leonardi and A. Pratelli:
On the Cheeger sets in strips and non-convex domains,
Calc. Var. Partial Differ. Equ. 55 (2016), 867-898.
-
A. Pratelli and G. Saracco:
On the generalized Cheeger problem and an application to 2d strips,
Rev. Mat. Iberoamericana 33 (2017), 219-237.
-
C. R. De Oliveira and A. A. Verri:
Mild singular potentials as effective Laplacians in narrow strips,
Math. Scand. 120 (2017), 145-160.
-
J. Royer:
Local energy decay and diffusive phenomenon
in a dissipative wave guide,
J. Spectr. Theory 8 (2018), 769-841.
-
C. R. Mamani and A. A. Verri:
Influence Of Bounded States In The Neumann Laplacian
In A Thin Waveguide,
Rocky Mt. J. Math. 48 (2018), 1993-2021.
-
M. Malloug and J. Royer:
Energy Decay In A Wave Guide With Dissipation At Infinity,
ESAIM: COCV 24 (2018), 519-549.
-
A. F. Rossini:
On the spectrum of Robin Laplacian in a planar waveguide,
Czechoslovak Math. J. 69 (2019), 485-501.
-
M. Karuhanga:
On the discrete spectrum of Schrodinger operators
with Ahlfors regular potentials in a strip,
J. Math. Anal. Appl. 475 (2019), 918-938.
-
S. Kim:
Application of a complete radiation boundary condition
for the Helmholtz equation in locally perturbed waveguides,
J. Comput. Appl. Math. 367 (2020) UNSP 112458.
-
C. de Oliveira and A. A. Verri:
On the Neumann Laplacian in nonuniformly collapsing strips,
Commun. Contemp. Math. 22 (2020) 1950021.
Last modified: 22 September 2020