David Krejcirik's page:

Works citing   [J. Phys. A 39 (2006), pp. 10143-10153]

  1. A. Mostafazadeh:
    Is weak pseudo-Hermiticity weaker than pseudo-Hermiticity?,
    J. Math. Phys. 47, no. 9, (Sep 2006), art. no. 092101.

  2. A. Mostafazadeh:
    Krein-Space Formulation of PT-Symmetry, CPT-Inner Products, and Pseudo-Hermiticity,
    Czech J. Phys. 56 (2006), 919-933.

  3. V. Jakubsky:
    Thermodynamics of pseudo-Hermitian systems in equilibrium,
    Mod. Phys. Lett. A 22 (2007), 1075-1084.

  4. P. Siegl:
    Supersymmetric quasi-Hermitian Hamiltonians with point interactions on a loop,
    J. Phys. A: Math. Theor. 41 (2008), Art. No. 244025.

  5. C. M. Bender and D. W. Hook:
    Exact isospectral pairs of PT symmetric Hamiltonians,
    J. Phys. A: Math. Theor. 41 (2008), Art. No. 244005.

  6. P. E. G. Assis and A. Fring:
    Non-Hermitian Hamiltonians of Lie algebraic type,
    J. Phys. A: Math. Theor. 42 (2009), Art. No. 015203.

  7. P. Siegl:
    The non-equivalence of pseudo-Hermiticity and presence of antilinear symmetry,
    Pramana-J. Phys. 73 (2009), 279-286.

  8. B. F. Samsonov, V. V. Shamshutdinova and A. V. Osipov:
    Equivalent Hermitian operator from supersymmetric quantum mechanics,
    Phys. Lett. A 374 (2010), 1962-1965.

  9. E. Ercolessi, G. Marmo and G. Morandi:
    From the equations of motion to the canonical commutation relations,
    Riv. Nuovo Cimento 33 (2010), 401-590.

  10. E. Ergun and M. Saglam:
    On the metric of a non-Hermitian model,
    Rep. Math. Phys. 65 (2010), 367-378.

  11. A. Mostafazadeh:
    Pseudo-Hermitian representation of quantum mechanics,
    Int. J. Geom. Meth. Mod. Phys. 7 (2010), 1191-1306.

  12. E. Ergun:
    A two-parameter family of non-Hermitian Hamiltonians with real spectrum,
    J. Phys. A: Math. Theor. 43 (2010), Art. No. 455212.

  13. L. Boulton, M. Levitin and M. Marletta:
    On a class of non-self-adjoint periodic eigenproblems with boundary and interior singularities,
    J. Differ. Equations 249 (2010), 3081-3098.

  14. P. Siegl:
    PT-Symmetric Square Well-Perturbations and the Existence of Metric Operator,
    Int. J. Theor. Phys. 50 (2011), 991-996.

  15. J. Zelezny:
    Spectrum of the Metric Operator of a Simple PT-Symmetric Model,
    Int. J. Theor. Phys. 50 (2011), 1012-1018.

  16. O. Olendski:
    Resonant alteration of propagation in guiding structures with complex Robin parameter and its magnetic-field-induced restoration,
    Ann. Phys. 326 (2011), 1479-1500.

  17. P. E. G. Assis:
    Metric operators for non-Hermitian quadratic su(2) Hamiltonians,
    J. Phys. A: Math. Theor. 44 (2011), Art. No. 265303.

  18. A. Fring and M. Smith:
    Non-Hermitian multi-particle systems from complex root spaces,
    J. Phys. A: Math. Theor. 45 (2012), Art. No. 085203.

  19. O. Olendski:
    Guiding structures with multiply connected cross sections: Evolution of propagation in external fields at complex Robin parameters,
    Ann. Phys. 327 (2012), 1365-1390.

  20. V. V. Shamshutdinova:
    Construction of the metric and equivalent Hermitian Hamiltonian via SUSY transformation operators,
    Phys. Atom. Nucl. 75 (2012), 1294-1298.

  21. C. M. Bender and S. Kuzhel:
    Unbounded C-symmetries and their nonuniqueness,
    J. Phys. A: Math. Theor. 45 (2012), 444005.

  22. E. Ergun:
    Finding of the metric operator for a quasi-Hermitian model,
    J. Funct. Space. Appl. (2013), Art. No. 716109.

  23. S. Hassi and S. Kuzhel:
    On J-self-adjoint operators with stable C-symmetries,
    P. Roy. Soc. Edinb. A 143 (2013), 141-167.

  24. D. I. Borisov:
    On a PT-symmetric waveguide with a pair of small holes,
    Proc. Steklov Inst. Math. 281 (2013), S5-S21.

  25. C. M. Bender and M. Gianfreda:
    Nonuniqueness of the C operator in PT-symmetric quantum mechanics,
    J. Phys. A: Math. Theor. 46 (2013), 275306.

  26. P. Ambichl, K. G. Makris, L. Ge, Y. D. Chong, A. D. Stone, S. Rotter:
    Breaking of PT Symmetry in bounded and unbounded scattering systems,
    Phys. Rev. X 3 (2013), 041030.

  27. S. R. Garcia, E. Prodan and M. Putinar:
    Mathematical and physical aspects of complex symmetric operators,
    J. Phys. A: Math. Theor. 47 (2014), 353001.

  28. E. Ergun:
    On the Metric Operator for a Nonsolvable Non-Hermitian Model,
    Rep. Math. Phys. 75 (2015), 403-416.

  29. J. Royer:
    Exponential Decay for the Schrodinger Equation on a Dissipative Waveguide,
    Ann. H. Poincare 16 (2015), 1807-1836.

  30. F. Ruzicka:
    Hilbert Space Inner Products for PJ-symmetric Su-Schrieffer-Heeger Models,
    Int. J. Theor. Phys. 54 (2015), 4154-4163.

  31. F. M. Fernandez:
    Non-Hermitian Hamiltonians and Similarity Transformations,
    Int. J. Theor. Phys. 55 (2016), 843-850.

  32. R. Novak:
    Bound states in waveguides with complex Robin boundary conditions,
    Asympt. Anal. 96 (2016) 251-281.

  33. F. Ruzicka:
    Quasi-Hermitian Lattices with Imaginary Zero-Range Interactions,
    Edited by: Bagarello, F; Passante, R; Trapani, C Conference: 15th International Workshop on Pseudo-Hermitian Hamiltonians in Quantum Physics (PHHQP) Location: Palermo, ITALY Date: MAY 18-23, 2015.
    Book Series: Springer Proceedings in Physics 184 (2016), 371-381.

  34. T. Dohnal and P. Siegl:
    Bifurcation of eigenvalues in nonlinear problems with antilinear symmetry,
    J. Math. Phys. 57 (2016) 093502.

  35. V. Lotoreichik and P. Siegl:
    Spectra of definite type in waveguide models,
    Proc. Amer. Math. Soc. 145 (2017) 1231-1246.

  36. F. Thompson, K. Brown, H. Mathur and K. Mckee:
    Contact interactions and Kronig-Penney models in Hermitian and PT symmetric quantum mechanics,
    J. Phys. A: Math. Theor.51 (2018) 495204.

Last modified: 20 May 2019