David Krejcirik's page:
Works citing  
[ESAIM: Control, Optimisation and Calculus of Variations 15 (2009) 555-568]
-
O. Olendski and L. Mikhailovska:
Theory of a curved planar waveguide with Robin boundary conditions,
Phys. Rev. E 81 (2010), Art. No. 036606.
-
C. Cacciapuoti and D. Finco:
Graph-like models for thin waveguides
with Robin boundary conditions,
Asympt. Anal. 70 (2010), 199-230.
-
C. R. de Oliveira:
Quantum singular operator limits of thin Dirichlet tubes
via Gamma-convergence,
Rep. Math. Phys. 67 (2011), 1-32.
-
D. Borisov and G. Cardone:
Complete asymptotic expansions for eigenvalues of
Dirichlet Laplacian in thin three-dimensional rods,
ESAIM: Control, Optimisation and Calculus of Variations 17
(2011), 887-908.
-
C. R. de Oliveira and A. A. Verri:
On the spectrum and weakly effective operator for Dirichlet Laplacian
in thin deformed tubes,
J. Math. Anal. Appl. 381 (2011), 454-468.
-
D. Borisov and G. Cardone:
Planar waveguide with "twisted" boundary conditions:
Small width,
J. Math. Phys. 53 (2012), art. no. 023503.
-
G. Bouchitte, L. Mascarenhas and L. Trabucho:
Thin waveguides with Robin boundary conditions,
J. Math. Phys. 53 (2012), Art. No. 123517.
-
S. Jimbo and K. Kurata:
Asymptotic Behavior of Eigenvalues of the Laplacian
on a Thin Domain under the Mixed Boundary Condition,
Indiana Univ. Math. J. 65 (2016), 867-898.
-
K. Pankrashkin and N. Popoff:
An effective Hamiltonian for the eigenvalue asymptotics of
the Robin Laplacian with a large parameter,
J. Math. Pures Appl. 106 (2016), 615-650.
-
T. Yachimura:
Two-phase eigenvalue problem on thin domains
with Neumann boundary condition,
Differ. Integral. Equ. 31 (2018), 735-760.
-
A. Kachmar and N. Raymond:
Tunnel effect in a shrinking shell enlacing a magnetic field,
Rev. Mat. Iberoam. 35 (2019), 2053-2070.
-
A. F. Rossini:
On the spectrum of Robin Laplacian in a planar waveguide,
Czechoslovak Math. J. 69 (2019), 485-501.
-
A. Gaudiello, D. Gomez, M.-E.Perez-Martinez:
Asymptotic analysis of the high frequencies for the Laplace operator
in a thin T-like shaped structure,
J. Math. Pures Appl. 134 (2020), 299-327.
Last modified: 21 May 2019