David Krejcirik's page:

Works citing   [J. Phys. A: Math. Theor. 41 (2008) 244012]

  1. S. Albeverio, A. K. Motovilov and A. A. Shkalikov:
    Bounds on Variation of Spectral Subspaces under J-Self-adjoint Perturbations,
    Integral Equations Operator Theory 64 (2009), 455-486.

  2. M. Znojil:
    Fundamental length in quantum theories with PT-symmetric Hamiltonians,
    Phys. Rev. D 80 (2009), Art. No. 045022.

  3. M. Znojil:
    Fundamental length in quantum theories with PT-symmetric Hamiltonians. II. The case of quantum graphs,
    Phys. Rev. D 80 (2009), Art. No. 105004.

  4. M. Znojil:
    Complete set of inner products for a discrete PT-symmetric square-well Hamiltonian,
    J. Math. Phys. 50 (2009), Art. No. 122105.

  5. B. F. Samsonov, V. V. Shamshutdinova and A. V. Osipov:
    Equivalent Hermitian operator from supersymmetric quantum mechanics,
    Phys. Lett. A 374 (2010), 1962-1965.

  6. M. Znojil:
    Gegenbauer-solvable quantum chain model,
    Phys. Rev. A 82 (2010), Art. No. 052113.

  7. P. Siegl:
    PT-Symmetric Square Well-Perturbations and the Existence of Metric Operator,
    Int. J. Theor. Phys. 50 (2011), 991-996.

  8. M. Znojil and M. Tater:
    CPT-Symmetric Discrete Square Well,
    Int. J. Theor. Phys. 50 (2011), 982-990.

  9. J. Zelezny:
    Spectrum of the Metric Operator of a Simple PT-Symmetric Model,
    Int. J. Theor. Phys. 50 (2011), 1012-1018.

  10. O. Olendski:
    Resonant alteration of propagation in guiding structures with complex Robin parameter and its magnetic-field-induced restoration,
    Ann. Phys. 326 (2011), 1479-1500.

  11. O. Olendski:
    Guiding structures with multiply connected cross sections: Evolution of propagation in external fields at complex Robin parameters ,
    Ann. Phys. 327 (2012), 1365-1390.

  12. V. V. Shamshutdinova:
    Construction of the metric and equivalent Hermitian Hamiltonian via SUSY transformation operators,
    Phys. Atom. Nucl. 75 (2012), 1294-1298.

  13. C. M. Bender and S. Kuzhel:
    Unbounded C-symmetries and their nonuniqueness,
    J. Phys. A: Math. Theor. 45 (2012), 444005.

  14. M. Znojil:
    Quantum star-graph analogues of PT-symmetric square wells,
    Can. J. Phys. 90 (2012), 1287-1293.

  15. E. Ergun:
    Finding of the metric operator for a quasi-Hermitian model,
    J. Funct. Space. Appl. (2013), Art. No. 716109.

  16. S. Hassi and S. Kuzhel:
    On J-self-adjoint operators with stable C-symmetries,
    P. Roy. Soc. Edinb. A 143 (2013), 141-167.

  17. C. M. Bender and M. Gianfreda:
    Nonuniqueness of the C operator in PT-symmetric quantum mechanics,
    J. Phys. A: Math. Theor. 46 (2013), 275306.

  18. M. Znojil:
    Solvable model of quantum phase transitions and the symbolic-manipulation-based study of its multiply degenerate exceptional points and of their unfolding,
    Ann. Phys. 336 (2013), 98-111.

  19. P. Ambichl, K. G. Makris, L. Ge, Y. D. Chong, A. D. Stone, S. Rotter:
    Breaking of PT Symmetry in bounded and unbounded scattering systems,
    Phys. Rev. X 3 (2013), 041030.

  20. S. R. Garcia, E. Prodan and M. Putinar:
    Mathematical and physical aspects of complex symmetric operators,
    J. Phys. A: Math. Theor. 47 (2014), 353001.

  21. M. Znojil:
    Solvable non-Hermitian discrete square well with closed-form physical inner product,
    J. Phys. A: Math. Theor. 47 (2014), 435302.

  22. E. Ergun:
    On the Metric Operator for a Nonsolvable Non-Hermitian Model,
    Rep. Math. Phys. 75 (2015), 403-416.

  23. M. Znojil:
    Quantum star-graph analogues of PT-symmetric square wells: Part II, spectra,
    Can. J. Phys. 93 (2015), 765-768.

  24. M. Znojil:
    Solvable quantum lattices with nonlocal non-Hermitian endpoint interactions,
    Ann. Phys. 361 (2015), 226-246.

  25. R. Novak:
    Bound states in waveguides with complex Robin boundary conditions,
    Asympt. Anal. 96 (2016) 251-281.

  26. D. I. Borisov and M. Znojil:
    Mathematical and Physical Meaning of the Crossings of Energy Levels in PT-Symmetric Systems,
    Edited by: Bagarello, F; Passante, R; Trapani, C Conference: 15th International Workshop on Pseudo-Hermitian Hamiltonians in Quantum Physics (PHHQP) Location: Palermo, ITALY Date: MAY 18-23, 2015.
    Book Series: Springer Proceedings in Physics 184 (2016), 201-217.

  27. F. Thompson, K. Brown, H. Mathur and K. Mckee:
    Contact interactions and Kronig-Penney models in Hermitian and PT symmetric quantum mechanics,
    J. Phys. A: Math. Theor. 51 (2018) 495204.

  28. M. Znojil:
    Theory of Response to Perturbations in Non-Hermitian Systems Using Five-Hilbert-Space Reformulation of Unitary Quantum Mechanics,
    Entropy 22 (2020), 80.

Last modified: 27 May 2020