David Krejcirik's page:
Works citing  
[J. Phys. A: Math. Theor. 41 (2008) 244012]
-
S. Albeverio, A. K. Motovilov and A. A. Shkalikov:
Bounds on Variation of Spectral Subspaces under J-Self-adjoint Perturbations,
Integral Equations Operator Theory 64 (2009), 455-486.
-
M. Znojil:
Fundamental length in quantum theories with PT-symmetric Hamiltonians,
Phys. Rev. D 80 (2009), Art. No. 045022.
-
M. Znojil:
Fundamental length in quantum theories with PT-symmetric Hamiltonians.
II. The case of quantum graphs,
Phys. Rev. D 80 (2009), Art. No. 105004.
-
M. Znojil:
Complete set of inner products for a discrete
PT-symmetric square-well Hamiltonian,
J. Math. Phys. 50 (2009), Art. No. 122105.
-
B. F. Samsonov, V. V. Shamshutdinova and A. V. Osipov:
Equivalent Hermitian operator
from supersymmetric quantum mechanics,
Phys. Lett. A 374 (2010), 1962-1965.
-
M. Znojil:
Gegenbauer-solvable quantum chain model,
Phys. Rev. A 82 (2010), Art. No. 052113.
-
P. Siegl:
PT-Symmetric Square Well-Perturbations
and the Existence of Metric Operator,
Int. J. Theor. Phys. 50 (2011), 991-996.
-
M. Znojil and M. Tater:
CPT-Symmetric Discrete Square Well,
Int. J. Theor. Phys. 50 (2011), 982-990.
-
J. Zelezny:
Spectrum of the Metric Operator
of a Simple PT-Symmetric Model,
Int. J. Theor. Phys. 50 (2011), 1012-1018.
-
O. Olendski:
Resonant alteration of propagation in guiding structures
with complex Robin parameter and its magnetic-field-induced restoration,
Ann. Phys. 326 (2011), 1479-1500.
-
O. Olendski:
Guiding structures with multiply connected cross sections: Evolution of propagation
in external fields at complex Robin parameters ,
Ann. Phys. 327 (2012), 1365-1390.
-
V. V. Shamshutdinova:
Construction of the metric and equivalent Hermitian Hamiltonian
via SUSY transformation operators,
Phys. Atom. Nucl. 75 (2012), 1294-1298.
-
C. M. Bender and S. Kuzhel:
Unbounded C-symmetries and their nonuniqueness,
J. Phys. A: Math. Theor. 45 (2012), 444005.
-
M. Znojil:
Quantum star-graph analogues of PT-symmetric square wells,
Can. J. Phys. 90 (2012), 1287-1293.
-
E. Ergun:
Finding of the metric operator for a quasi-Hermitian model,
J. Funct. Space. Appl. (2013), Art. No. 716109.
-
S. Hassi and S. Kuzhel:
On J-self-adjoint operators with stable C-symmetries,
P. Roy. Soc. Edinb. A 143 (2013), 141-167.
-
C. M. Bender and M. Gianfreda:
Nonuniqueness of the C operator
in PT-symmetric quantum mechanics,
J. Phys. A: Math. Theor. 46 (2013), 275306.
-
M. Znojil:
Solvable model of quantum phase transitions
and the symbolic-manipulation-based study of its multiply
degenerate exceptional points and of their unfolding,
Ann. Phys. 336 (2013), 98-111.
-
P. Ambichl, K. G. Makris, L. Ge, Y. D. Chong, A. D. Stone, S. Rotter:
Breaking of PT Symmetry in bounded
and unbounded scattering systems,
Phys. Rev. X 3 (2013), 041030.
-
S. R. Garcia, E. Prodan and M. Putinar:
Mathematical and physical aspects of complex symmetric operators,
J. Phys. A: Math. Theor. 47 (2014), 353001.
-
M. Znojil:
Solvable non-Hermitian discrete square well
with closed-form physical inner product,
J. Phys. A: Math. Theor. 47 (2014), 435302.
-
E. Ergun:
On the Metric Operator for a Nonsolvable Non-Hermitian Model,
Rep. Math. Phys. 75 (2015), 403-416.
-
M. Znojil:
Quantum star-graph analogues of PT-symmetric square wells:
Part II, spectra,
Can. J. Phys. 93 (2015), 765-768.
-
M. Znojil:
Solvable quantum lattices
with nonlocal non-Hermitian endpoint interactions,
Ann. Phys. 361 (2015), 226-246.
-
R. Novak:
Bound states in waveguides with complex Robin boundary conditions,
Asympt. Anal. 96 (2016) 251-281.
-
D. I. Borisov and M. Znojil:
Mathematical and Physical Meaning of the Crossings of Energy Levels
in PT-Symmetric Systems,
Edited by: Bagarello, F; Passante, R; Trapani, C
Conference: 15th International Workshop on Pseudo-Hermitian Hamiltonians in Quantum Physics (PHHQP) Location: Palermo, ITALY Date: MAY 18-23, 2015.
Book Series: Springer Proceedings in Physics 184 (2016), 201-217.
-
F. Thompson, K. Brown, H. Mathur and K. Mckee:
Contact interactions and Kronig-Penney models
in Hermitian and PT symmetric quantum mechanics,
J. Phys. A: Math. Theor. 51 (2018) 495204.
-
M. Znojil:
Theory of Response to Perturbations in Non-Hermitian Systems
Using Five-Hilbert-Space Reformulation of Unitary Quantum Mechanics,
Entropy 22 (2020), 80.
Last modified: 27 May 2020