David Krejcirik's page:

Works citing   [Ann. Phys. 349 (2014), 268-287]

  1. P. Freitas and P. Siegl:
    Spectra of graphene nanoribbons with armchair and zigzag boundary conditions,
    Rev. Math. Phys. 26 (2014), 1450018.

  2. C. A. Downing and M. E. Portnoi:
    One-dimensional Coulomb problem in Dirac materials,
    Phys. Rev. A 90 (2014), 052116.

  3. J. R. F. Lima and F. Moraes:
    Indirect band gap in graphene from modulation of the Fermi velocity,
    Solid State Communications 201 (2015), 82-87.

  4. L. A. Gonzalez-Diaz, A. A. Diaz, S. Diaz-Solorzano and J. R. Darias:
    Self-adjoint Dirac type Hamiltonians in one space dimension with a mass jump,
    J. Phys. A: Math. Theor. 48 (2015), 045207.

  5. O. Oliveira, A. J. Chaves, W. de Paula and T. Frederico:
    Signature of curved QFT effects on the optical properties of deformed graphene,
    EPL 117 (2017), 27003.

  6. A. Schulze-Halberg and P. Roy:
    Construction of zero-energy states in graphene through the supersymmetry formalism,
    J. Phys. A: Math. Theor. 50 (2017), 365205.

  7. M. V. Ioffe and D. N. Nishnianidze:
    Zero energy states for a class of two-dimensional potentials in graphene,
    Mod. Phys. Lett. B 32 (2018) 1850329.

  8. T. Rojjanason, P. Burikbam and K. Pimsamarn:
    Charged fermion in (1+2)-dimensional wormhole with axial magnetic field,
    Eur. Phys. J. C 79 (2019) 660.

  9. R. R. S.. Oliveira, V. F. S. Borges and M. F. Sousa:
    Energy Spectrum of a Dirac Particle with Position-Dependent Mass Under the Influence of the Aharonov-Casher Effect,
    Braz. J. Phys. 49 (2019), 801-807.

  10. A. L. Phan, D. N. Le, V. H. Le and P. Roy:
    Electronic spectrum of spherical fullerene molecules in the presence of generalized magnetic fields,
    Eur. Phys. J. Plus 135 (2020), 6.

  11. M. Castillo-Celeita and D. J. Fernandez:
    Dirac electron in graphene with magnetic fields arising from first-order intertwining operators,
    J. Phys. A: Math. Theor. 53 (2020), 035302.

Last modified: 27 May 2020