David Krejcirik's page:

Works citing   [Proc. Amer. Math. Soc. 136 (2008), 2997-3006]

  1. A. Figalli, F. Maggi and A. Pratelli:
    A note on Cheeger sets,
    Proc. Amer. Math. Soc. 137 (2009), 2057-2062.

  2. B. Brandolini, C. Nitsch C and C. Trombetti:
    New isoperimetric estimates for solutions to Monge-Ampere equations,
    Ann. I. H. Poincare-AN 26 (2009), 1265-1275.

  3. B. Brandolini, C. Nitsch C and C. Trombetti:
    An upper bound for nonlinear eigenvalues on convex domains by means of the isoperimetric deficit,
    Arch. Math. 94 (2010), 391-400.

  4. R. S. Laugesen and B. A. Siudeja:
    Sums of Laplace eigenvalues: Rotations and tight frames in higher dimensions,
    J. Math. Phys. 52 (2011), art. no. 093703.

  5. D. Borisov and G. Cardone:
    Planar waveguide with "twisted" boundary conditions: Small width,
    J. Math. Phys. 53 (2012), art. no. 023503.

  6. A. L. Delitsyn, B. T. Nguyen and D. S. Grebenkov:
    Trapped modes in finite quantum waveguides,
    Eur. Phys. J. B 85, (2012), art. no. 176.

  7. D. S. Grebenkov, B.-T. Nguyen:
    Geometrical structure of Laplacian eigenfunctions,
    SIAM Rev. 55 (2013) 601-667.

  8. R. S. Laugesen and B. A. Siudeja:
    Sharp spectral bounds on starlike domains,
    J. Spectr. Theory 4 (2014), 309-347.

  9. A. Hasnaoui and L. Hermi:
    A sharp upper bound for the first Dirichlet eigenvalue of a class of wedge-like domains,
    Z. Angew. Math. Phys. 66 (2015), 2419-2440.

  10. D. Bucur and I. Fragala:
    Blaschke-Santalo and Mahler inequalities for the first eigenvalue of the Dirichlet Laplacian,
    Proc. London Math. Soc. 113 (2016), 387-417.

  11. S. R. Jain and R. Samajdar:
    Nodal portraits of quantum billiards: Domains, lines, and statistics,
    Rev. Mod. Phys. 89 (2017), 045005.

  12. V. Lotoreichik and T. Ourmieres-Bonafos:
    A Sharp Upper Bound on the Spectral Gap for Graphene Quantum Dots,
    Math. Phys. Anal. Geom. 22 (2019) 13.

  13. S. Zoalroshd:
    Upper and lower bounds for the Hilbert-Schmidt norm of a potential operator,
    Arch. Math. 112 (2019) 645-648.

  14. A. V. Vikulova:
    Parallel coordinates in three dimensions and sharp spectral isoperimetric inequalities,
    Ricerche di Matematica (2020) .

Last modified: 22 September 2020