David Krejcirik's page:

Works citing   [Math. Phys. Anal. Geom. 9 (2006), 335-352]

  1. M. Jilek:
    Straight Quantum Waveguide with Robin Boundary Conditions,
    SIGMA 3 (2007), art. no. 108.

  2. O. Olendski and L. Mikhailovska:
    Analytical and numerical study of a curved planar waveguide with combined Dirichlet and Neumann boundary conditions in a uniform magnetic field,
    Phys. Rev. B 77 (2008), Art. No. 174405.

  3. O. Olendski and L. Mikhailovska:
    Theory of a curved planar waveguide with Robin boundary conditions,
    Phys. Rev. E 81 (2010), Art. No. 036606.

  4. O. Olendski:
    Resonant alteration of propagation in guiding structures with complex Robin parameter and its magnetic-field-induced restoration,
    Ann. Phys. 326 (2011), 1479-1500.

  5. M. H. Al-Hashimi and U.-J. Wiese:
    From a particle in a box to the uncertainty relation in a quantum dot and to reflecting walls for relativistic fermions,
    Ann. Phys. 327 (2012), 1-28.

  6. A. L. Delitsyn, B. T. Nguyen and D. S. Grebenkov:
    Trapped modes in finite quantum waveguides,
    Eur. Phys. J. B 85, (2012), art. no. 176.

  7. G. Bouchitte, L. Mascarenhas and L. Trabucho:
    Thin waveguides with Robin boundary conditions,
    J. Math. Phys. 53 (2012), Art. No. 123517.

  8. D. S. Grebenkov, B.-T. Nguyen:
    Geometrical structure of Laplacian eigenfunctions,
    SIAM Rev. 55 (2013) 601-667.

  9. P. Exner and A. Minakov:
    Curvature-induced bound states in Robin waveguides and their asymptotical properties ,
    J. Math. Phys. 55 (2014), 122101.

  10. R. Novak:
    Bound states in waveguides with complex Robin boundary conditions,
    Asympt. Anal. 96 (2016) 251-281.

  11. S. Jimbo and K. Kurata:
    Asymptotic Behavior of Eigenvalues of the Laplacian on a Thin Domain under the Mixed Boundary Condition,
    Indiana Univ. Math. J. 65 (2016), 867-898.

  12. A. F. Rossini:
    On the spectrum of Robin Laplacian in a planar waveguide,
    Czechoslovak Math. J. 69 (2019), 485-501.

Last modified: 27 May 2020