David Krejcirik's page:
Works citing  
[Arch. Ration. Mech. Anal. 188 (2008), 245-264]
-
C. Cacciapuoti and P. Exner:
Nontrivial edge coupling from a Dirichlet network squeezing:
the case of a bent waveguide,
J. Phys. A: Math. Theor. 40 (2007), F511-F523.
-
P. Exner and M. Fraas:
A remark on helical waveguides,
Phys. Lett. A 369 (2007), 393-399.
-
C. Forster:
Trapped modes for an elastic plate
with a perturbation of Young's modulus,
Comm. Partial Differential Equations 33 (2008), 1339-1367.
-
M. Znojil:
Fundamental length in quantum theories
with PT-symmetric Hamiltonians.
II. The case of quantum graphs ,
Phys. Rev. D 80 (2009), Art. No. 105004.
-
C. R. de Oliveira:
Quantum singular operator limits of thin Dirichlet tubes
via Gamma-convergence,
Rep. Math. Phys. 67 (2011), 1-32.
-
C. R. de Oliveira and A. A. Verri:
On the spectrum and weakly effective operator for Dirichlet Laplacian
in thin deformed tubes,
J. Math. Anal. Appl. 381 (2011), 454-468.
-
D. Borisov and G. Cardone:
Planar waveguide with "twisted" boundary conditions:
Discrete spectrum,
J. Math. Phys. 52, 12, (dec 2011), art. no. 123513.
-
D. Borisov and G. Cardone:
Planar waveguide with "twisted" boundary conditions:
Small width,
J. Math. Phys. 53 (2012), art. no. 023503.
-
V. Jakubsky and M. S. Plyushchay:
Supersymmetric twisting of carbon nanotubes,
Phys. Rev. D 85 (2012), Art. No. 045035.
-
G. Bouchitte, L. Mascarenhas and L. Trabucho:
Thin waveguides with Robin boundary conditions,
J. Math. Phys. 53 (2012), Art. No. 123517.
-
D. Borisov and K. Pankrashkin:
Quantum waveguides with small periodic perturbations:
gaps and edges of Brillouin zones,
J. Phys. A: Math. Theor. 46 (2013), art. no. 235203.
-
S. Kondej:
Schrodinger operator with a strong varying interaction
on a curve in R^2,
J. Math. Phys. 54 (2013) 093511.
-
P. Exner and D. Barseghyan:
Spectral estimates for Dirichlet Laplacians
on perturbed twisted tubes,
Operators and Matrices 8 (2014) 167-183.
-
S. A. Nazarov, K. Ruotsalainen and P. Uusitalo:
Bound states of waveguides with two right-angled bends,
J. Math. Phys. 56 (2015) 021505.
-
M. Choulli and E. Soccorsi:
An inverse anisotropic conductivity problem induced
by twisting a homogeneous cylindrical domain,
J. Spectr. Theory 5 (2015), 295-329.
-
M. Egert, R. Haller-Dintelmann and J. Rehberg:
Hardy's Inequality for Functions Vanishing
on a Part of the Boundary,
Potential Anal. 43 (2015), 49-78.
-
S. Haag, J. Lampart and S. Teufel:
Generalised Quantum Waveguides,
Ann. H. Poincare 16 (2015), 2535-2568.
-
C. R. Mamani and A. A. Verri:
Influence Of Bounded States In The Neumann Laplacian
In A Thin Waveguide,
Rocky Mt. J. Math. 48 (2018), 1993-2021.
-
F. L. Bakharev and P. Exner:
Geometrically induced spectral effects in tubes
with a mixed Dirichlet-Neumann boundary,
Rep. Math. Phys. 81 (2018), 213-231.
-
C. R. Mamani and A. A. Verri:
Absolute Continuity and Band Gaps of the Spectrum of the Dirichlet Laplacian
in Periodic Waveguides,
Bull. Braz. Math. Soc. 49 (2018) 495-513.
-
V. Bruneau, P. Miranda and N. Popoff:
Resonances near thresholds in slightly twisted waveguides,
Rep. Math. Phys. 81 (2018), 213-231.
-
D. Barseghyan and A. Khrabustovskyi:
Spectral estimates for Dirichlet Laplacian on tubes
with exploding twisting velocity,
Oper. Matrices 13 (2019), 311-322.
-
V. Bruneau, P. Miranda, D. Parra and N. Popoff:
Eigenvalue and Resonance Asymptotics in Perturbed Periodically Twisted Tubes:
Twisting Versus Bending,
Ann. H. Poincare 21 (2020) 377-403.
-
C. R. Mamani and A. A. Verri:
A note on the spectrum of the Neumann Laplacian
in thin periodic waveguides,
Colloq. Math. 162 (2018) 211-234.
-
P. Exner:
Spectral properties of soft quantum waveguides,
J. Phys. A: Math. Theor. 53 (2020) 355302.
Last modified: 22 September 2020