David Krejcirik's page:

Works citing   [Arch. Ration. Mech. Anal. 188 (2008), 245-264]

  1. C. Cacciapuoti and P. Exner:
    Nontrivial edge coupling from a Dirichlet network squeezing: the case of a bent waveguide,
    J. Phys. A: Math. Theor. 40 (2007), F511-F523.

  2. P. Exner and M. Fraas:
    A remark on helical waveguides,
    Phys. Lett. A 369 (2007), 393-399.

  3. C. Forster:
    Trapped modes for an elastic plate with a perturbation of Young's modulus,
    Comm. Partial Differential Equations 33 (2008), 1339-1367.

  4. M. Znojil:
    Fundamental length in quantum theories with PT-symmetric Hamiltonians. II. The case of quantum graphs ,
    Phys. Rev. D 80 (2009), Art. No. 105004.

  5. C. R. de Oliveira:
    Quantum singular operator limits of thin Dirichlet tubes via Gamma-convergence,
    Rep. Math. Phys. 67 (2011), 1-32.

  6. C. R. de Oliveira and A. A. Verri:
    On the spectrum and weakly effective operator for Dirichlet Laplacian in thin deformed tubes,
    J. Math. Anal. Appl. 381 (2011), 454-468.

  7. D. Borisov and G. Cardone:
    Planar waveguide with "twisted" boundary conditions: Discrete spectrum,
    J. Math. Phys. 52, 12, (dec 2011), art. no. 123513.

  8. D. Borisov and G. Cardone:
    Planar waveguide with "twisted" boundary conditions: Small width,
    J. Math. Phys. 53 (2012), art. no. 023503.

  9. V. Jakubsky and M. S. Plyushchay:
    Supersymmetric twisting of carbon nanotubes,
    Phys. Rev. D 85 (2012), Art. No. 045035.

  10. G. Bouchitte, L. Mascarenhas and L. Trabucho:
    Thin waveguides with Robin boundary conditions,
    J. Math. Phys. 53 (2012), Art. No. 123517.

  11. D. Borisov and K. Pankrashkin:
    Quantum waveguides with small periodic perturbations: gaps and edges of Brillouin zones,
    J. Phys. A: Math. Theor. 46 (2013), art. no. 235203.

  12. S. Kondej:
    Schrodinger operator with a strong varying interaction on a curve in R^2,
    J. Math. Phys. 54 (2013) 093511.

  13. P. Exner and D. Barseghyan:
    Spectral estimates for Dirichlet Laplacians on perturbed twisted tubes,
    Operators and Matrices 8 (2014) 167-183.

  14. S. A. Nazarov, K. Ruotsalainen and P. Uusitalo:
    Bound states of waveguides with two right-angled bends,
    J. Math. Phys. 56 (2015) 021505.

  15. M. Choulli and E. Soccorsi:
    An inverse anisotropic conductivity problem induced by twisting a homogeneous cylindrical domain,
    J. Spectr. Theory 5 (2015), 295-329.

  16. M. Egert, R. Haller-Dintelmann and J. Rehberg:
    Hardy's Inequality for Functions Vanishing on a Part of the Boundary,
    Potential Anal. 43 (2015), 49-78.

  17. S. Haag, J. Lampart and S. Teufel:
    Generalised Quantum Waveguides,
    Ann. H. Poincare 16 (2015), 2535-2568.

  18. C. R. Mamani and A. A. Verri:
    Influence Of Bounded States In The Neumann Laplacian In A Thin Waveguide,
    Rocky Mt. J. Math. 48 (2018), 1993-2021.

  19. F. L. Bakharev and P. Exner:
    Geometrically induced spectral effects in tubes with a mixed Dirichlet-Neumann boundary,
    Rep. Math. Phys. 81 (2018), 213-231.

  20. C. R. Mamani and A. A. Verri:
    Absolute Continuity and Band Gaps of the Spectrum of the Dirichlet Laplacian in Periodic Waveguides,
    Bull. Braz. Math. Soc. 49 (2018) 495-513.

  21. V. Bruneau, P. Miranda and N. Popoff:
    Resonances near thresholds in slightly twisted waveguides,
    Rep. Math. Phys. 81 (2018), 213-231.

  22. D. Barseghyan and A. Khrabustovskyi:
    Spectral estimates for Dirichlet Laplacian on tubes with exploding twisting velocity,
    Oper. Matrices 13 (2019), 311-322.

  23. V. Bruneau, P. Miranda, D. Parra and N. Popoff:
    Eigenvalue and Resonance Asymptotics in Perturbed Periodically Twisted Tubes: Twisting Versus Bending,
    Ann. H. Poincare 21 (2020) 377-403.

  24. C. R. Mamani and A. A. Verri:
    A note on the spectrum of the Neumann Laplacian in thin periodic waveguides,
    Colloq. Math. 162 (2018) 211-234.

  25. P. Exner:
    Spectral properties of soft quantum waveguides,
    J. Phys. A: Math. Theor. 53 (2020) 355302.

Last modified: 22 September 2020