David Krejcirik's page:
Works citing  
[Ann. H. Poincare 2 (2001), pp. 553-572]
-
T. Tsurumi and M. Wadati:
Ground state properties of a toroidally trapped
Bose-Einstein condensate,
J. Phys. Soc. Japan 70 (2001), pp. 1512-1518.
-
A. Aslanyan and E. B. Davies:
Separation of variables in deformed cylinders,
J. Comput. Phys. 174 (2001), no. 1, pp. 327-344.
-
T. Ekholm and H. Kovarik:
Stability of the magnetic Schrodinger operator in a waveguide,
Commun. in Partial Differential Equations
30 (2005), no. 4-6, pp. 539-565.
-
C. Lin and Z. Lu:
Existence of bound states for layers
built over hypersurfaces in $R^{n+1}$,
J. Funct. Anal. 244 (2007), 1-25.
-
V. V. Grushin:
Asymptotic behavior of eigenvalues of the Laplace operator
in infinite cylinders perturbed by transverse extensions,
Math. Notes 81 (2007), 291-296.
H. Kovarik and A. Sacchetti:
Resonances in twisted quantum waveguides,
J. Phys. A: Math. Theor. 40 (2007), 8371-8384.
-
V. V. Grushin:
Asymptotic behavior of the eigenvalues of the Schrodinger operator
in thin closed tubes,
Math. Notes 83 (2008), 463-477.
H. Kovarik and S. Vugalter:
Estimates on trapped modes in deformed quantum layers,
J. Math. Anal. Appl. 345 (2008), 566-572.
M. D. Malykh:
On the emptiness criteria for the discrete spectrum
of the Dirichlet problem for the equation Delta nu plus lambda nu=0,
Comp. Math. Math. Phys. 49 (2009), 279-283.
-
V. V. Grushin:
Asymptotic behavior of eigenvalues of the Laplace operator
in thin infinite tubes,
Math. Notes 85 (2009), 661-673.
-
S. A. Nazarov:
Trapped modes in a T-shaped waveguide,
Acoust. Phys. 56 (2010), 1004-1015.
-
S. A. Nazarov:
Asymptotic expansions of eigenvalues in the continuous spectrum
of a regularly perturbed quantum waveguide,
Theor. Math. Phys. 167 (2011), 606-627.
-
S. A. Nazarov:
Asymptotic formulas for trapped modes and for eigenvalues
below the threshold of the continuous spectrum of a waveguide
with a thin screening barrier,
St. Petersburg Math. J. 23 (2012), 571-601.
-
S. A. Nazarov:
On the spectrum of the laplace operator
on the infinite dirichlet ladder,
St. Petersburg Math. J. 23 (2012), 1023-1045.
-
G. Cardone, S. A. Nazarov and K. Ruotsalainen:
Bound states of a converging quantum waveguide,
ESAIM Math. Model. Numer. Anal. 47 (2013), 305-315.
-
G. Cardone:
Asymptotic Analysis of an Eigenvalue
in the Discrete Spectrum of a Quantum Waveguide,
11th International Conference of Numerical Analysis
and Applied Mathematics (ICNAAM 2013),
AIP Conference Proceedings 1558 (2013), 1809-1812.
-
S. Kondej:
Schrodinger operator with a strong varying interaction
on a curve in R^2,
J. Math. Phys. 54 (2013) 093511.
-
J. Stockhofe and P. Schmelcher:
Nonadiabatic couplings and gauge-theoretical structure
of curved quantum waveguides,
Phys. Rev. A 89 (2014), 033630.
-
S. A. Nazarov, K. Ruotsalainen and P. Uusitalo:
The Y-junction of quantum waveguides,
ZAMM - Journal of Applied Mathematics and Mechanics 89 (2014), 477-486.
-
R. Novak:
Bound states in waveguides with complex Robin boundary conditions,
Asympt. Anal. 96 (2016) 251-281.
-
S. A. Nazarov, K. M. Ruotsalainen and M. Silvola:
Trapped Modes in Piezoelectric and Elastic Waveguides,
J. Elasticity 124 (2016) 193-223.
-
B. M. Brown, V. Hoang, M. Plum, M. Radosz and I. Wood:
Gap localization of TE-modes by arbitrarily weak defects,
J. London Math. Soc. (2) 95 (2017) 942-962.
-
I. Y. Popov and A. I. Popov:
Line with attached segment as a model of Helmholtz resonator:
Resonant states completeness,
Journal of King Saud University Science 29 (2017) 133-136.
-
A. I. Popov, I. Y. Popov and D. A. Gerasimov:
Resonance State Completeness Problem for Quantum Graph,
Proceedings Of The International Conference On Numerical Analysis
And Applied Mathematics 2016 (ICNAAM-2016)
1863 (2017) UNSP 390002-1.
-
P. Amore, J. P. Boyd and F. M. Fernandez:
Bound States In Weakly Deformed Waveguides:
Numerical Versus Analytical Results,
ANZIAM Journal 59 (2017) 200-214.
-
A. A. Verri:
Dirichlet Laplacian in a thin twisted strip,
Int. J. Math. 30 (2019) 1950006.
-
S. Kim:
Application of a complete radiation boundary condition
for the Helmholtz equation in locally perturbed waveguides,
J. Comput. Appl. Math. 367 (2020) UNSP 112458.
Last modified: 27 May 2020